MAAP #187: Deforestación y Fuegos en la Amazonía 2022

Mapa base de pérdida de bosque amazónico 2022. Puntos críticos de deforestación e incendios en todo el bioma Amazónico. Datos: UMD/GLAD, ACA/MAAP.

Presentamos un análisis detallado de los principales focos de deforestación y fuegos en la Amazonía en 2022 (ver Mapa Base).

Los datos revelan varios hallazgos clave:

  • En 2022, estimamos la deforestación de 1,98 millones de hectáreas. Esto representa un aumento del 21% desde 2021, y es el segundo más alto registrado, solo detrás del pico en 2004.
    k
  • Los puntos críticos de deforestación estuvieron especialmente concentrados a lo largo de las carreteras en la Amazonía brasileña, en la frontera de la soja en el sureste de la Amazonía boliviana y alrededor de áreas protegidas en el noroeste de la Amazonía colombiana.
    k
  • La gran mayoría de la deforestación ocurrió en Brasil (72,8%), seguido de Bolivia (12,4%), Perú (7,3%) y Colombia (4,9%). Cabe destacar que la deforestación en Bolivia fue la más alta registrada y en Brasil la más alta desde principios de los años 2000.
    k
  • Los incendios impactaron adicionalmente 491,223 hectáreas de bosque primario. Este total representa un aumento del 1,6% respecto a 2021 y es el cuarto más alto registrado (solo detrás de las temporadas intensas de incendios de 2016, 2017 y 2020). Además, cada una de las siete temporadas de incendios más intensas ha ocurrido en los últimos siete años. Casi el 93% del impacto de los incendios ocurrió en solo dos países: Brasil y Bolivia.
    k
  • En total, 2,47 millones de hectáreas de bosque primario se vieron afectadas por la deforestación y los incendios. Este total representa el tercer más alto registrado, solo detrás de los años posteriores al fenómeno de El Niño en 2016 y 2017.
    k
  • Desde 2002, estimamos la deforestación de 30,7 millones de hectáreas de bosque primario, lo que es más grande que el tamaño del país de Italia.

A continuación, nos centramos en los seis países con la mayor deforestación (Brasil, Bolivia, Perú, Colombia, Ecuador y Venezuela) con mapas y análisis adicionales.

Pérdida de bosque primario amazónico (combinado), 2002-2022

Gráfico de resultados de pérdida de bosque Amazónico, 2002-22. Datos: UMD/GLAD, ACA/MAAP.

Pérdida de bosque primario amazónico (por país), 2002-2022

 

Amazonía Brasileña

Mapa Base de Brasil, 2022. Puntos críticos de deforestación e incendios en la Amazonía brasileña en relación con las carreteras principales. Datos: UMD/GLAD, ACA/MAAP.

En 2022, la Amazonía brasileña perdió 1,4 millones de hectáreas de bosque primario debido a la deforestación.

Los incendios impactaron directamente en 348,824 hectáreas adicionales.

La deforestación aumentó un 20,5% respecto a 2021 y fue la más alta registrada desde los años pico de 2002 a 2005.

El impacto de los incendios fue el cuarto más alto registrado, solo por detrás de los años de intensos incendios de 2016, 2017 y 2020.

La deforestación se concentró a lo largo de las principales carreteras, especialmente en las Carreteras 230 (Transamazónica), 364, 319 y 163 en los estados de Amazonas, Pará, Rondônia y Acre (ver Mapa Base de Brasil).

Los impactos directos de los incendios se concentraron en la frontera de la soja, ubicada en el sureste del estado de Mato Grosso.

 

Amazonía Boliviana

Mapa Base de Bolivia, 2022. Puntos críticos de deforestación e incendios en la Amazonía boliviana. DATOS: UMD/GLAD, ACA/MAAP.

En 2022, la Amazonía boliviana perdió 245,177 hectáreas de bosque primario debido a la deforestación. Los incendios impactaron directamente en 106.922 hectáreas adicionales.

Destacamos que esta deforestación fue un 47% mayor que en 2021 y la más alta registrada.

El impacto de los incendios también fue superior al año anterior y el segundo más alto registrado, solo detrás del año intenso de 2020.

Tanto la deforestación como los incendios se concentraron en la frontera de la soja ubicada en el departamento sureste de Santa Cruz (ver Mapa Base de Bolivia).

 

Amazonía Peruana

Mapa Base de Peru, 2022. Puntos críticos de deforestación e incendios en la Amazonía peruana. DATOS: UMD/GLAD, ACA/MAAP.

En 2022, la Amazonía peruana perdió 144,682 hectáreas de bosque primario debido a la deforestación. Los incendios impactaron directamente en 16.408 hectáreas adicionales.

La deforestación aumentó un 6,7% respecto a 2021 y fue la quinta más alta registrada. El impacto de los incendios disminuyó respecto al año anterior, pero aún fue relativamente alto.

La deforestación se concentró en la Amazonía central y sur (regiones de Ucayali y Madre de Dios, respectivamente) (ver Mapa Base de Perú).

En la Amazonía central, destacamos la rápida deforestación para una nueva colonia menonita (ver MAAP #166).

En la Amazonía sur, la deforestación por la minería de oro sigue siendo un problema en las comunidades indígenas y dentro del Corredor Minero oficial (ver MAAP #185).

 

Amazonía Colombiana

Mapa Base de Colombia, 2022. Puntos críticos de deforestación e incendios en la Amazonía colombiana. DATOS: UMD/GLAD, ACA/MAAP.

En 2022, la Amazonía colombiana perdió 97,417 hectáreas de bosque primario debido a la deforestación. Los incendios impactaron directamente en 12.880 hectáreas adicionales.

La deforestación disminuyó un 2% respecto a 2021, pero aún fue relativamente alta (quinta más alta registrada), continuando la tendencia de una pérdida forestal elevada desde el acuerdo de paz con las FARC en 2016.

El impacto de los incendios aumentó respecto al año anterior y, de hecho, fue el más alto registrado, superando los años 2018 y 2019.

El Mapa Base de Colombia muestra que sigue habiendo un «arco de deforestación» en el noroeste de la Amazonía colombiana (departamentos de Caquetá, Meta y Guaviare).

Este arco afecta a numerosas Áreas Protegidas (especialmente los Parques Nacionales Tinigua y Chiribiquete) y Reservas Indígenas (particularmente Yari-Yaguara II y Nukak Maku).

 

Amazonía Ecuatoriana

Mapa Base de Ecuador, 2022. Puntos críticos de deforestación e incendios en la Amazonía ecuatoriana. DATOS: UMD/GLAD, ACA/MAAP.

Aunque representa solo el 1% de la pérdida total en la Amazonía, la deforestación en la Amazonía ecuatoriana fue la más alta registrada en 2022 (18,902 hectáreas), un incremento del 80% desde 2021.

Existen varios puntos críticos de deforestación causados por la minería de oro (ver MAAP #182), la expansión de plantaciones de palma aceitera y la agricultura a pequeña escala.

 

Amazonía Venezolana

En la Amazonía venezolana, la deforestación se mantuvo en niveles similares al año pasado (12,584 hectáreas).

Existe un punto crítico de deforestación causado por la minería de oro en el Parque Nacional Yapacana (ver MAAP #173, MAAP #156, MAAP #169).

There are also hotspots in the Orinoco Mining Arc caused by mining and agriculture.

También hay puntos críticos en el Arco Minero del Orinoco, causados por la minería y la agricultura.

 

Metodología

Consulte la versión en inglés del informe para conocer la metodología detallada.

Agradecimientos

Agradecemos a nuestros colegas en Global Forest Watch (GFW), una iniciativa del World Resources Institute (WRI), por sus comentarios y acceso a los datos.

Este trabajo fue apoyado por NORAD (Agencia Noruega para la Cooperación al Desarrollo) y ICFC (Fondo Internacional para la Conservación de Canadá).

Cita

Finer M, Mamani N (2023) Deforestación y Fuegos en la Amazonía 2022. MAAP: 187

MAAP #183: Áreas Protegidas y Territorios Indígenas – Modalidad Eficaz Contra la Deforestación en la Amazonía

Mapa Base. Pérdida de bosque primario (2017-21) en la Amazonía, en relación con las áreas protegidas y territorios indígenas.

A medida que la deforestación sigue amenazando los bosques primarios en la Amazonía, las designaciones de uso de la tierra son una de las mejores esperanzas para la conservación a largo plazo de los bosques intactos que quedan.

En el presente reporte, evaluamos el impacto de dos de las más importantes: las áreas protegidas y los territorios indígenas.

Nuestro estudio calcula la perdida de bosque primario en los últimos 5 años (2017 – 2021), en nueve países del bioma amazónico, que abarcan una superficie de 883.7 millones de hectáreas (ver Mapa Base).

Asimismo, logramos distinguir, por primera vez, entre la perdida de bosques por incendios y no incendios. Este último es nuestra mejor aproximación a la deforestación por causas antropogénicas, aunque tambien incluye fenómenos naturales (como derrumbes y tormentas de viento).

Analizamos los resultados de las tres principales categorías de uso de la tierra:

1) Áreas Protegidas (a nivel nacional y estatal/departamental), que cubren 197 millones de hectáreas (23.6% de la Amazonía).

2) Territorios indígenas (titulados) que cubren 163.8 millones de hectáreas (19.6% de la Amazonía).

3) Otros (todas las áreas restantes fuera de las áreas protegidas y los territorios indígenas) que cubren 473 millones de hectáreas (56.7% de la Amazonía).

En ese contexto, se concluye que la deforestación fue el principal factor de pérdida de bosque, considerando a los incendios como un subconjunto menor. Es importante precisar que, en promedio, durante el 2017 al 2021, las áreas protegidas y los territorios indígenas tuvieron niveles similares de eficacia, reduciendo la tasa de pérdida de bosque primario tres veces más en comparación con áreas fuera de estas designaciones.

A continuación, mostramos los resultados clave con más detalle, incluyendo un desglose de información para la Amazonía occidental (Bolivia, Colombia, Ecuador y Perú) y la Amazonía brasileña.

Hallazgos Clave

Bioma Amazónico

Hemos documentado la pérdida de 11 millones de hectáreas de bosque primario en los nueve países del bioma amazónico entre el 2017 y el 2021. De este total, el 71% se debió a causas ajenas a incendios (deforestación y causas naturales) y el 29% a incendios.

Para las categorías principales de uso de tierra, solo el 11% de la pérdida de bosque ocurrió en áreas protegidas y territorios indígenas, mientras que el 78% restante ocurrió en áreas fuera de estas designaciones.

Para estandarizar estos resultados en función de las distintas coberturas de superficie, calculamos los índices de pérdida de bosque primario (pérdida/área total de cada categoría). La Figura 1 muestra los resultados de estos índices en los nueve países amazónicos.

Figura 1. Tasas de pérdida de bosque primario en la Amazonía, 2017-21

Al desglosar por año, el 2017 registró las tasas de pérdida de bosque más elevadas, con una severa temporada de deforestación y de incendios. El 2021 registró la segunda más alta en deforestación, mientras que el 2020 la segunda más alta en pérdida de bosque por incendios.

En el promedio de los cinco años, las áreas protegidas (verde) tuvieron la tasa más baja de pérdida de bosque primario (0.12%), seguidas de los territorios indígenas (0.14%).

Los territorios indígenas (anaranjado) tuvieron en realidad una tasa de deforestación ligeramente inferior, pero una tasa superior de pérdida por incendio, resultando en general en una tasa de pérdida de bosque superior.

Fuera de estas designaciones (rojo), la tasa de pérdida de bosque primario fue el triple (0.36%), especialmente por una deforestación mucho mayor.

Amazonía Occidental

Desglosando los resultados específicamente para la Amazonía occidental (Bolivia, Colombia, Ecuador y Perú), documentamos la pérdida de 2.6 millones de hectáreas de bosque primario entre el 2017 y el 2021. De este total, el 80% corresponde a causas ajenas a incendios (deforestación y causas naturales) y el 20% a incendios.

Para las principales categorías de uso de suelo, el 9.6% ocurrió en áreas protegidas, el 15.6% en territorios indígenas y el 74.8% restante ocurrió fuera de estas designaciones.

La Figura 2 muestra las tasas estandarizadas de pérdida de bosque primario en la Amazonía occidental.

Figura 2. Tasas de Pérdida de Bosque Primario en la Amazonía Occidental, 2017-21.

Desglosado por años, el 2017 registró la mayor tasa de deforestación y de pérdida de bosque en general. Pero el 2020 tuvo la mayor tasa de pérdida por incendios, debido principalmente a los extensos incendios en Bolivia. El 2021 también tuvo una tasa de deforestación relativamente alta. Asimismo, cabe destacar el alto nivel de incendios en áreas protegidas en el 2020 y el 2021, y en territorios indígenas en el 2019.

Promediando los cinco años analizados, las áreas protegidas tuvieron la tasa más baja de pérdida de bosque primario (0.11%), seguidas de los territorios indígenas (0.16%).

Fuera de estas designaciones, la tasa de pérdida de bosque primario fue del 0.30%. Es decir, el triple que en las áreas protegidas y el doble que en los territorios indígenas.

Amazonía Brasileña

Desglosando los resultados específicamente para la Amazonía brasileña, documentamos la pérdida de 8.1 millones de hectáreas de bosque primario entre el 2017 y el 2021. De este total, el 68% se debió a causas ajenas a incendios (deforestación y causas naturales) y el 32% a incendios.

Para las principales categorías de uso de suelo, el 9.4% ocurrió en territorios indígenas, el 11.2% ocurrió en áreas protegidas y el 79.4% restante ocurrió fuera de estas designaciones.

La Figura 3 muestra las tasas estandarizadas de pérdida de bosque primario en la Amazonía brasileña.

Figura 3. Tasas de pérdida de bosque primario en la Amazonía brasileña, 2017-21.

Desglosado por año, el 2017 tuvo la tasa de pérdida de bosque más alta registrada en todo el estudio (0.58%), debido tanto a la elevada deforestación como a los incendios. Note que los territorios indígenas se vieron especialmente afectados por los incendios en el 2017.

El 2020 registró la segunda tasa más alta de pérdida de bosque, también debido a una intensa temporada de incendios. Los incendios no fueron tan graves al año que siguió (2021), pero la deforestación aumentó.

En el promedio de los cinco años, los territorios indígenas tuvieron la tasa más baja de pérdida de bosque primario (0.14%), seguidos de las áreas protegidas (0.15%).

Los territorios indígenas tuvieron la tasa de deforestación más baja, pero un alto impacto por incendios.

Fuera de estas designaciones (rojo), la tasa de pérdida de bosque primario fue el triple (0.45%).

Metodología

Para estimar la deforestación en las tres categorías (áreas protegidas, territorios indígenas y otros), utilizamos los datos anuales de pérdida de bosque (2017-21) de la Universidad de Maryland (laboratorio GLAD) para tener una fuente coherente en todos los países (Hansen et al 2013).

Obtuvimos estos datos, que tienen una resolución espacial de 30 metros, del servidor de «Global Forest Loss due to Fires 2000-2021«. También es posible visualizar e interactuar con los datos en el portal principal de Global Forest Change.

Los datos anuales se desglosaron en pérdida de bosque debido a incendios y a causas ajenas a incendios (otros factores de perturbación). Es importante señalar que las causas ajenas a incendios incluyen tanto la deforestación por causas antropogénicas como la pérdida por fuerzas naturales (derrumbes, tormentas de viento, etc.).

También filtramos estos datos sólo para la pérdida de bosque primario, siguiendo la metodología establecida por Global Forest Watch. El bosque primario se define generalmente como bosque intacto que no ha sido talado anteriormente (a diferencia del bosque secundario que es previamente talado, por ejemplo). Aplicamos este filtro intersecando los datos de pérdida de cobertura forestal con el conjunto de datos adicional «bosques tropicales húmedos primarios» a partir del 2001 (Turubanova et al 2018). Por lo tanto, a menudo utilizamos el término «pérdida de bosque primario» para describir estos datos filtrados.

Los datos presentados como tasa de pérdida de bosque primario se estandarizan por el área total cubierta de cada categoría respectiva. Por ejemplo, para comparar adecuadamente los datos de pérdida de bosque primario en áreas que tienen un tamaño total de 100 hectáreas frente a 1000 hectáreas respectivamente, dividimos por el área para estandarizar el resultado.

Nuestro ámbito geográfico se extiende desde los Andes hasta la llanura amazónica y llega hasta las transiciones con el Cerrado y el Pantanal. Este rango incluye nueve países amazónicos (o región Pan-Amazónica según la definición de RAISG) y consiste en una combinación del límite de la cuenca amazónica, el límite biogeográfico amazónico y el límite de la Amazonía legal en Brasil. Ver el Mapa Base más arriba para la delineación de este límite amazónico híbrido, diseñado para una máxima inclusión.

Las fuentes de datos adicionales incluyen:

  • Áreas protegidas a nivel nacional y estatal/departamental: RUNAP 2020 (Colombia), SNAP 2022 (Ecuador), SERNAP & ACEAA 2020 (Bolivia), SERNANP 2022 (Perú), INPE/Terrabrasilis 2022 (Brasil), SOS Orinoco 2021 (Venezuela), y RAISG 2020 (Guyana, Surinam, y Guyana Francesa.)
  • Territorios Indígenas: RAISG & Ecociencia 2022 (Ecuador), INPE/Terrabrasilis 2022 (Brasil), RAISG 2020 (Colombia, Bolivia, Venezuela, Guyana, Surinam, y Guyana Francesa), y MINCU & ACCA 2021 (Perú). Para Perú, se incluyeron a las comunidades nativas tituladas y a las Reservas Comunales para grupos indígenas en aislamiento voluntario.

Para el análisis, primero categorizamos las Áreas Protegidas y luego los Territorios Indígenas para evitar la superposición de áreas. Cada categoría se desglosó por año de creación/reconocimiento para que coincidiera con el reporte anual de pérdida de bosque. Por ejemplo, si un área protegida se creó en diciembre del 2018, se considera dentro del análisis para el año 2019.

Agradecimientos

Este trabajo se realizó gracias al Andes Amazon Fund (AAF), a la Agencia Noruega de Cooperación para el Desarrollo (NORAD), y al Fondo Internacional de Conservación de Canadá (ICFC).

Agradecemos a M. MacDowell, C. Zavala, M. Cohen, y G.Palacios por sus útiles comentarios a versiones anteriores de este reporte

Cita

Finer M, Mamani N (2023) Áreas Protegidas y Territorios Indígenas Eficaces Contra la Deforestación en la Amazonía. MAAP: 183.

MAAP #178: Deforestación por Minería de Oro en la Amazonía

Mapa Base. Puntos críticos de deforestación por minería en la Amazonía. Las letras A-J indican la ubicación de los casos. Haga clic para agrandar imagen.

La minería de oro (minería aurífera) es una de los principales causas de la deforestación en la Amazonía.

Aunque no suele alcanzar la escala de la deforestación agrícola, tiene el potencial de impactar considerablemente zonas críticas como áreas protegidas y territorios indígenas.

Además, suele dirigirse a zonas remotas, impactando así a bosques primarios ricos en carbono.

En el presente reporte, presentaremos por primera vez, el panorama a gran escala de los principales focos de deforestación causados por la minería aurífera en todo el bioma Amazónico

Se ha evidenciado que la minería de oro está gravamente causando deforestación en casi los nueve países amazónicos (ver Mapa Base).

El análisis está enfocado principalmente en cinco países: Perú, Brasil, Venezuela, Ecuador y Bolivia, mostrando estudios de casos activos de los frentes más graves de deforestación minera.

Lo cual ha permitido evidenciar que, en la mayoría de los casos, esta minería es probablemente ilegal, ya que se está llevando a cabo en áreas protegidas y territorios indígenas.

Es importante mencionar que este reporte se centra en la actividad minera que está provocando la deforestación de bosques primarios. Hay otras zonas críticas de extracción de oro en ríos, como al norte de Perú y al sur de Colombia, que no se incluyen en este informe.

A continuación, mostramos una serie de imágenes satelitales de alta resolución de los casos de estudio de la Amazonía. Cada ejemplo destaca la deforestación reciente de la minería aurífera; es decir, comparando el 2020 (panel izquierdo) con el 2022 (panel derecho).

Estudios de Caso, en Alta Resolución

Amazonía Peruana

El sur de Perú (específicamente, la región Madre de Dios) es uno de los ejemplos más graves y emblemáticos de la deforestación provocada por la minería aurífera en toda la Amazonía, la cual ha deforestado miles de hectáreas de bosque primario (ver MAAP #154). Los frentes mineros activos han evolucionado sustancialmente durante los últimos 20 años. Recientemente, la minería aurífera ha impactado a zonas como Mangote y Pariamanu.

A. Mangote

B. Pariamanu

Amazonía Brasileña

En la vasta Amazonia brasileña, la deforestación provocada por la minería aurífera ilegal es más grave en varios territorios indígenas, entre los que destacan: Munduruku (estado de Pará), Kayapó (Pará) y Yanomami (Roraima).

C. Territorio Indígena Munduruku


D. Territorio Indígena Kayapó


E. Territorio Indígena Yanomami

Amazonía Venezolana

La minería es uno de los principales causas de la deforestación en la Amazonía venezolana (MAAP #155). Este impacto minero se está produciendo en el designado Arco Minero del Orinoco, pero también en áreas protegidas clave como los Parques Nacionales de Caura, Canaima, y Yapacana.

F. Parque Nacional Canaima


G. Parque Nacional Yapacana

Amazonía Ecuatoriana

Hemos estado documentando los numerosos focos de deforestación por minería en la Amazonía ecuatoriana que parecen intensificarse en los últimos años. Dos ejemplos clave se encuentran a lo largo del río Punino (provincias de Napo y Orellana) y más al sur, en el Parque Nacional Podocarpus.

H. Río Punino

I. Parque Nacional Podocarpus

Amazonia Boliviana

Uno de los puntos críticos de deforestación por minería de oro más nuevos se encuentra a lo largo del río Tuichi en el Parque Nacional Madidi.

J. Parque Nacional Madidi

Metodología

Los focos de deforestación por minería se identificaron en base a los esfuerzos continuos del proyecto MAAP, y asistidos por el portal  Amazon Mining Watch.

Agradecimientos

Agradecemos a A. Folhadella, S. Novoa, D. Larrea, C. De Ugarte, M. Teran, C. Zavala, y G. Palacios por sus útiles comentarios a este reporte, y Conservación Amazónica – ACCA para datos sobre sitios mineros en el norte de Perú.

Este trabajo se realizó con el apoyo de Norad (Agencia Noruega de Cooperación para el Desarrollo) e ICFC (Fondo Internacional para la Conservación de Canadá)

Cita

Finer M, Ariñez A, Mamani N (2023) Deforestación por Minería de Oro en la Amazonía. MAAP: 178.

MAAP #180: Menonitas y Deforestación por Soya en la Amazonía Boliviana

Mapa Base. Deforestación por soya y colonias Menonitas en la Amazonía Boliviana.

Continuamos con la segunda parte de nuestra serie sobre la deforestación por soya en la Amazonía boliviana.

En la primera parte, ver MAAP #179, documentamos la deforestación masiva impulsada por la soya, de 904,518 hectáreas entre el 2001 y el 2021 en la Amazonía boliviana.

Durante este período de tiempo, un gran número de colonias agrícolas Menonitas se han establecido en el sur de la Amazonía boliviana, ayudando a impulsar el aumento de la expansión de la soya en la región.1,2

En el presente reporte, incorporamos datos de localización de colonias para estimar el rol de las Menonitas en esta deforestación por soya.

En resumen, encontramos que los Menonitas han causado un tercio (33%) de la deforestación de soya en la Amazonía boliviana en los últimos 5 años (ver Mapa Base).

Además, los menonitas causaron casi un cuarto (23%) de la deforestación total por soya en los últimos 20 años (210,980 hectáreas).

Menonitas y Deforestación por Soya en la Amazonía Boliviana

Estimamos que las colonias Menonitas han causado la deforestación de 210,980 hectáreas para la expansión de cultivos de soya en la Amazonía boliviana entre el 2001 y el 2021 (ver Mapa Base). Esto representa el 23% de la deforestación total de soya en Bolivia en los últimos 20 años.

Esta deforestación por soya impulsada por los menonitas alcanzó su punto máximo en el 2016 (31,728 hectáreas), tras un pico anterior en el 2008 (ver Cuadro 1). En general, note que la deforestación de los menonitas para cultivos de soya ha sido relativamente alta (>2,000 hectáreas) todos los años desde el 2001 hasta el 2020.

Centrándonos solo en los últimos 5 años (2017-21), los menonitas han deforestado 33,234 hectáreas. Esto representa un aumento a 33% de la deforestación total de soya durante este período.

Cuadro 1. Deforestación de soya causada por los menonitas en la Amazonía Boliviana, 2001-2021.

Imágenes Satelitales de las Colonias Menonitas en la Amazonía boliviana

Presentamos una serie de imágenes satelitales recientes que muestran ejemplos de colonias menonitas en la Amazonía boliviana. Vea en el Mapa Base la ubicación de los tres zooms (A-C). Note que están formadas por parcelas agrícolas altamente organizadas y conectadas que han sido creadas tras eventos de deforestación en los últimos 20 años.

Zoom A. Colonia Nordenhof
Zoom B. Colonias Valle Hermoso y Nuevo Mexico

 

Zoom C. Colonia La Honda

 

Metodología

Para esta serie de reportes, hemos empleado una metodología en tres partes.

En primer lugar, trazamos un mapa de la «Área sembrada de soya» de 2001 a 2021 basándonos en los datos de Song et al 2021. Estos datos están disponibles en el sitio GLAD de la Universidad de Maryland “Commodity Crop Mapping and Monitoring in South America.”3

En segundo lugar, encima de esta capa de soya sembrada , trazamos un mapa de la pérdida de bosques entre 2001 y 2021, también basado en datos de la Universidad de Maryland.4 Esto nos sirvió como estimación de la deforestación provocada por la soya.

En tercer lugar, encima de la misma capa de soya sembrada, incorporamos un conjunto de datos adicional procedente de un estudio reciente sobre la expansión de las colonias menonitas en América Latina.3 Los datos espaciales de este estudio están disponibles aquí. Depues, estimamos la pérdida de bosques en estas zonas seleccionadas de soya menonita.

Agradecimientos

Estos informes son parte de una serie enfocada en la Amazonía boliviana a través de una colaboración estratégica entre las organizaciones hermanas Amazon Conservation in Bolivia (ACEAA) y Amazon Conservation en los Estados Unidos.

Referencias

1Yann le Polain de Waroux, Janice Neumann, Anna O’Driscoll & Kerstin Schreiber (2021) Pious pioneers: the expansion of Mennonite colonies in Latin America, Journal of Land Use Science, 16:1, 1-17, DOI: 10.1080/1747423X.2020.1855266

2Nobbs-Thiessen, B. (2020). Landscape of Migration. The University of North Carolina Press.

3Song, X.P., M.C. Hansen, P. Potopov, B. Adusei, J. Pickering, M. Adami, A. Lima, V. Zalles, S.V. Stehman, D.M. Di Bella, C.M. Cecilia, E.J. Copati, L.B. Fernandes, A. Hernandez-Serna, S.M. Jantz, A.H. Pickens, S. Turubanova, and A. Tyukavina. 2021. Massive soybean expansion in South America since 2000 and implications for conservation.

4Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. “High-Resolution Global Maps of 21st-Century Forest Cover Change.” Science 342 (15 November): 850–53. Data available from: earthenginepartners.appspot.com/science-2013-global-forest.

Cita

Finer M, Ariñez A (2023) Menonitas y Deforestación por Soya en la Amazonía Boliviana. MAAP #180.

MAAP #179: Deforestación por Soya en la Amazonía Boliviana

Mapa Base. Deforestación impulsada por la soya en la Amazonía boliviana, 2001-2021. Haga clic en el mapa para ampliarlo.

En general se sabe que los productos “commodities” como la palma aceitera, la soya, y el ganado son los principales impulsores de la deforestación en los trópicos, pero a menudo resulta difícil realizar estimaciones concisas.

Los nuevos datos satelitales están mejorando esta situación. Notablemente, investigadores han publicado la primera panorama de las plantaciones de soya en Sudamérica.1

En le presente reporte, utilizamos estos datos para estimar la reciente deforestación por soya en la Amazonía boliviana.

En la segunda parte de esta serie (ver MAAP #180), incorporamos datos adicionales para estimar el rol de las colonias Menonitas en esta deforestación por soya.

En resumen, documentamos la deforestación masiva de 904,518 hectáreas impulsada por la soya en la Amazonía boliviana entre el 2001 y el 2021 (ver Mapa Base).

De este total, los Menonitas han causado el 23% (210,980 hectáreas).

 

Deforestación por Soya en la Amazonía Boliviana, 2001 – 2021

La soya ha cubierto 2.1 millones de hectáreas en el sur de la Amazonía boliviana en los últimos 20 años, y su cobertura actual ronda los 1.2 millones de hectáreas.

Hemos documentado un nivel extremadamente alto de deforestación impulsada por la soya en la Amazonía boliviana: 904,518 hectáreas entre el 2001 y el 2021 (ver Mapa Base más arriba). Se trata de un área masiva, similar en tamaño a 1.3 millones de campos de fútbol.

Esta deforestación de soya alcanzó su punto máximo en el 2008 (92,000 hectáreas), pero ha sido relativamente alto (>18,000 hectáreas) anualmente entre el 2001 y 2019, lo que significa que es un problema persistente y de larga duración.

La gran mayoría de la deforestación total ocurrió en el departamento de Santa Cruz, más un ángulo pequeño en el departamento adyacente de Beni.

A continuación, la Figura 1 muestra la deforestación masiva de soya en los últimos 20 años en la Amazonía boliviana, comparando el 2001 (panel izquierdo) con el 2021 (panel derecho).

Figura 1. Deforestación por soya en la Amazonía boliviana, 2001 vs. 2021.

Deforestación por Soya en la Amazonía Boliviana, 2017 – 2021

De la deforestación total por soya señalada anteriormente, 11% (101,188 hectáreas) ocurrieron en los últimos 5 años (2017-21).

A continuación, las Figuras 2-4 muestran ejemplos de esta reciente deforestación, comparando el 2017 (panel izquierdo) con el 2021 (panel derecho). Ver el Mapa Base anterior para las ubicaciones de los recuadros A-C.

Figura 2. Deforestación por soya en la Amazonía boliviana, 2017 vs. 2021.
Figura 3. Deforestación por soya en la Amazonía boliviana, 2017 vs. 2021.
Figura 4. Deforestación por soya en la Amazonía boliviana, 2017 vs. 2021.

Metodología

Para esta serie de reportes, hemos empleado una metodología en tres partes.

Primero, identificamos la «superficie plantada de soya» del 2001 al 2021 basándonos en los datos de Song et al 2021.1 Estos datos están disponibles en el sitio GLAD de la Universidad de Maryland “Commodity Crop Mapping and Monitoring in South America.”

Segundo, además de la superficie plantada de soya mencionada arriba, identificamos la pérdida de bosque entre el 2001 y el 2021, también basado en datos de la Universidad de Maryland.2 Esto nos sirvió para estimar la deforestación por la soya.

Tercero, además de la superficie plantada con soya mencionada anteriormente, incorporamos un conjunto de datos adicional de un estudio reciente sobre la expansión de las colonias menonitas en América Latina.3 Los datos espaciales de este estudio están disponibles aquí. Luego, estimamos la pérdida de bosque en estas zonas seleccionadas de soya en colonias menonita. Ver MAAP #180.

Agradecimientos

Estos informes son parte de una serie enfocada en la Amazonía boliviana a través de una colaboración estratégica entre las organizaciones hermanas Amazon Conservation in Bolivia (ACEAA) y Amazon Conservation en los Estados Unidos.

Referencias

1Song, X.P., M.C. Hansen, P. Potopov, B. Adusei, J. Pickering, M. Adami, A. Lima, V. Zalles, S.V. Stehman, D.M. Di Bella, C.M. Cecilia, E.J. Copati, L.B. Fernandes, A. Hernandez-Serna, S.M. Jantz, A.H. Pickens, S. Turubanova, and A. Tyukavina. 2021. Massive soybean expansion in South America since 2000 and implications for conservation.

2Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. “High-Resolution Global Maps of 21st-Century Forest Cover Change.” Science 342 (15 November): 850–53. Data available from: earthenginepartners.appspot.com/science-2013-global-forest.

3Yann le Polain de Waroux, Janice Neumann, Anna O’Driscoll & Kerstin Schreiber (2021) Pious pioneers: the expansion of Mennonite colonies in Latin America, Journal of Land Use Science, 16:1, 1-17, DOI: 10.1080/1747423X.2020.1855266

Cita

Finer M, Ariñez A (2023) Deforestación por Soya en la Amazonía Boliviana. MAAP #179.

MAAP #168: Fuegos en la Amazonía 2022

Base map: Amazon fires 2022. Orange dots indicate major fire locations. The green line is the Amazon biogeographic boundary, and the blue line is the Amazon watershed boundary. Data: ACCA.

Presentamos una revisión concisa de la temporada de fuegos 2022 en la Amazonía, basada en los datos únicos de nuestra aplicación de monitoreo de fuegos en la Amazonía en tiempo real.*

En una técnica novedosa, la aplicación combina datos de la atmósfera (emisiones de aerosol en el humo) y del suelo (alertas de anomalías térmicas) para detectar con rapidez y precisión los incendios grandes. En resumen, la aplicación filtra los incendios más pequeños y destaca los más grandes que queman abundante biomasa.

Nuestros hallazgos principales incluyen:

  • En el 2022, hemos documentado 983 incendios grandes en toda la Amazonía (ver Mapa Base), afectando a casi 1 millón de hectáreas.
    j
  • La gran mayoría (72%) se produjo en la Amazonía brasileña, seguida de la Amazonía boliviana (15%), la Amazonía peruana (12%) y la Amazonía colombiana (1%). No se detectaron grandes incendios en los demás países amazónicos.
    k
  • En la Amazonia brasileña, la mayoría de los incendios grandes (71%) quemó zonas recientemente deforestadas, definidas como incendios antropogénicos en zonas recientemente deforestadas durante los últimos tres años. Este hallazgo resalta el vínculo clave entre la deforestación reciente y los incendios, como se describe para años anteriores (ver MAAP #129).
    j
  • Estimamos que más de 120 de los incendios grandes quemaron 58,000 hectáreas de zonas recientemente deforestadas para nuevas plantaciones de soja en la Amazonía brasileña y boliviana.
    k
  • En general, la temporada de incendios fue menos intensa de los dos años anteriores (2020 y 2021), para los cuales documentamos más de 2,500 incendios grandes anuales (ver MAAP #129). Esto parece consistente con los modelos de pronóstico de incendios que predijeron una «temporada de incendios levemente activa» en 2022 basada en la temperatura de la superficie del mar Atlántico.

A continuación, se presentan hallazgos adicionales de cada país.

Amazonía Brasileña

Incendio grande en la Amazonía brasileña (estado de Amazonas) el 22 de agosto de 2022, quemando un área recientemente deforestada, rodeada de bosque primario remanente. Datos: Planet.

Detectamos 704 incendios grandes en la Amazonía brasileña, entre mayo y octubre del 2022.

A principios de la temporada, desde mediados de mayo hasta finales de junio, hubo 60 incendios grandes que quemaron 25,000 hectáreas de zonas recientemente deforestadas para nuevas plantaciones de soja en el estado de Mato Grosso.

En julio, hubo un cambio a incendios en áreas recientemente deforestadas para nuevos pastos para ganado (ver imagen).

En general, del total de 704 incendios grandes, el 71% se produjo en zonas recientemente deforestadas (500 incendios grandes). Se calcula que estos incendios quemaron 285,000 hectáreas de bosque tropical recién talado, enfatizando de nuevo el estrecho vínculo existente entre los grandes incendios y las elevadas tasas de deforestación recientes en Brasil.

También registramos casi 100 incendios forestales (14% del total), definidos como grandes incendios antropogénicos que quemaron el bosque en pie (sin talar). Estos incendios, que pueden haber escapado de las quemas iniciales en zonas recientemente deforestadas o en pastizales, quemaron alrededor de 110,000 hectáreas de bosque amazónico brasileño. Aunque son preocupantes, estas cifras son mucho menores que las de la severa temporada de incendios forestales del 2020, donde el 40% de los incendios grandes quemaron 2.2 millones de hectáreas de bosque amazónico.

Los otros tipos de fuegos (además de las zonas recientemente deforestadas e incendios forestales) ocurrieron en los pastizales y las zonas de cultivo más antiguas.

Más de 50 de los incendios grandes se dieron en territorios indígenas y áreas protegidas. Los más afectados fueron los territorios indígenas de Xingu y Capoto/Jarina.

Los estados de Amazonas (29%), Mato Grosso (28%) y Pará (26%) fueron los que tuvieron más incendios grandes, seguidos de Rondônia (11%) y Acre (7%).

Amazonía Boliviana

Incendio grande en la Amazonía boliviana (Santa Cruz) el 21 de junio de 2022, quemando un área recientemente deforestada para nuevas plantaciones de soja. Datos: Planet.

Detectamos 151 incendios grandes en la Amazonía boliviana, entre mediados de mayo y mediados de octubre del 2022.

En la primera parte de la temporada de incendios (mayo-junio), la gran mayoría de los incendios quemaron más de 26,400 hectáreas de áreas recientemente deforestadas para nuevas plantaciones de soja, en el departamento de Santa Cruz (ver imagen).

A partir de julio, hubo un cambio hacia más incendios de sabana en el departamento de Beni.

En septiembre, se produjeron varios incendios forestales en Santa Cruz, definidos como grandes incendios antropogénico que quemaron bosque en pie (bosque no talado). Estos incendios, que pueden haber escapado de las quemas iniciales en zonas recientemente deforestadas o en pastizales, quemaron alrededor de 110,000 hectáreas de bosque amazónico boliviano.

Varios incendios de sabana afectaron al Parque Nacional Noel Kempff Mercado.

En general, la temporada de incendios de 2022 no fue tan intensa como la de los dos años anteriores, cuando muchos de los incendios de sabana se escaparon hacia los ecosistemas forestales secos circundantes.

Amazonía Peruana

Incendio grande en la Amazonía peruana (Madre de Dios) el 30 de agosto de 2022, quemando un área recientemente deforestada en un asentamiento de los Isrealitas cerca de la ciudad de Iberia. Datos: Planet.

Detectamos 122 incendios grandes en la Amazonía peruana, entre junio y mediados de octubre del 2022.

La mayoría de los incendios (71%) quemaron áreas recientemente deforestadas (más de 56,000 hectáreas), un patrón similar al de la Amazonía brasileña. Estos incendios se produjeron principalmente en las regiones Madre de Dios (ver imagen), Ucayali y Huánuco.

También se produjeron numerosos incendios grandes (25%) en los pastizales montanos, en Cusco y otras regiones. Estos incendios afectaron 6,100 hectáreas.

Por último, se produjeron varios incendios forestales, definidos como grandes incendios antropogénico que queman bosque en pie (bosque sin talar). El más notable fue un gran incendio en la región Ucayali, en octubre, que quemó 1,600 hectáreas de bosque en pie, alrededor de las nuevas colonias menonitas. Es probable que este incendio haya escapado de la quema de extensas áreas recientemente deforestadas por los menonitas.

Amazonía Colombiana

Incendio grande en la Amazonía colombiana (Meta) el 22 de febrero de 2022, quemando un área recientemente deforestada, rodeada de bosque primario remanente. Datos: Planet.

Detectamos 6 incendios grandes en la Amazonía colombiana, en febrero y marzo del 2022. Note que la temporada de incendios en Colombia es mucho más temprana que en los demás países. Nuestros datos son una subestimación, ya que empezamos a registrar datos después del inicio de la temporada de incendios.

De los principales incendios que registramos, cinco de ellos quemaron más de 1,300 hectáreas de zonas recientemente deforestadas en Guaviare, Meta y Caquetá.

*Notas y Metodologìa

Los resultados presentados se basan en un análisis de los datos generados por una aplicación única de Monitoreo de Fuegos en la Amazonía en tiempo real, durante el año 2022 hasta mediados de octubre.

La aplicación, alojada en Google Earth Engine, fue desarrollada y actualizada diariamente por la organización peruana Conservación Amazónica (ACCA). Los datos resultantes fueron analizados y registrados diariamente por la organización estadounidense Amazon Conservation. La aplicación se creó en el 2019, se actualizó en el 2020, y la versión actual se lanzó en mayo del 2021.

Cuando los incendios arden, emiten gases y aerosoles (definición de aerosol: suspensión de finas partículas sólidas o gotas líquidas en el aire u otro gas) como parte del humo saliente. Un satélite relativamente nuevo (Sentinel-5P, de la Agencia Espacial Europea) detecta estas emisiones de aerosoles. Los datos de los aerosoles, que tienen una resolución espacial de 7.5 km2, no se ven afectados por la nubosidad, lo que permite un seguimiento casi en tiempo real en todas las condiciones climáticas. La aplicación se actualiza cada día con los datos de ese mismo día.

La aplicación distinga los incendios pequeños (como los que se producen al quemar campos antiguos y, por tanto, queman poca biomasa) de los incendios más grandes (como los que se producen al quemar zonas recientemente deforestadas o bosques en pie y, por tanto, queman grandes cantidades de biomasa).

Definimos un «incendio grande» como uno que muestra niveles elevados de emisión de aerosoles en la aplicación, lo que indica la quema de niveles elevados de biomasa. Esto se traduce normalmente en un índice de aerosol (AI) de >1 (o de verde cian a rojo en la aplicación).

En un enfoque novedoso, la aplicación combina estos datos de aerosoles de la atmósfera con los datos de anomalías térmicas del suelo.

Para todos los incendios grandes detectados, cruzamos el patrón de emisiones de aerosoles con los datos térmicos del suelo para determinar la ubicación exacta del origen del incendio. Normalmente, en los grandes incendios hay un gran grupo de alertas de anomalías térmicas que ayudan al proceso.

En un último paso, los grandes incendios detectados se analizan luego con las imágenes ópticas de alta resolución del satélite en el portal de Planet Explorer. Con estas imágenes, podemos confirmar el gran incendio (observando el humo el día del incendio o una franja quemada en los días siguientes al incendio) y estimar su tamaño.

Además, con el amplio archivo de imágenes de satélite de Planet, podemos determinar el tipo de incendio. Es decir, comparando las imágenes de la fecha del incendio con las de fechas anteriores, podemos determinar si el fuego estaba quemando: a) una zona recientemente deforestada (definida como incendios en zonas recientemente deforestadas durante los últimos tres años), b) una zona deforestada más antigua (normalmente zonas de pasto de larga duración), o c) bosque en pie no deforestado (es decir, un incendio forestal), o sabana natural.

En la aplicación, también podemos cruzar referencias si se ha producido un incendio grande dentro de un área protegida o un territorio indígena titulado.

Note que los valores elevados en los índices de aerosoles también pueden deberse a otras causas, como las emisiones de ceniza volcánica o polvo del desierto, por lo tanto, es importante hacer una referencia cruzada de las emisiones elevadas con los datos térmicos y las imágenes ópticas.

Agradecimientos

Agradecemos a A. Folhadella, M. Silman, R. Catpo, and E. Ortiz por sus aportes a este reporte.

Este trabajo fue apoyado por Norad (Agencia Noruega para la Cooperación al Desarrollo) y ICFC (Fondo Internacional para la Conservación de Canadá).

Cita

Finer M, Costa H, Villa L (2022) Fuegos en la Amazonía 2022. MAAP: 168.

MAAP #164: Punto de Inflexión en la Amazonía – ¿Dónde estamos?

Mapa Base. Pérdida total del bosque amazónico. Datos: ACA/MAAP.

Cada vez más, se reporta que el mayor bosque tropical del mundo, la Amazonía, se acerca rápidamente a un punto de inflexión tipping point«).

En pocas palabras, significa que partes del bosque se convierten en ecosistemas más secos debido a la alteración de los patrones de precipitación y de las temporadas secas más intensas, ambos exacerbados por la deforestación.

La Amazonía genera su propia precipitación al reciclar el agua que pasa desde el Océano Atlántico. Por lo tanto, la elevada deforestación en la Amazonía oriental puede provocar graves impactos en la Amazonía central y occidental (ver la sección de Antecedentes, más abajo).

La bibliografía científica indica que este punto de inflexión podría desencadenarse con una pérdida del 25% de bosque, junto con los impactos del cambio climático.

Sin embargo, la literatura es ambigua en cuanto a la primera parte crítica del punto de inflexión: ¿cuánto se ha perdido ya?

Existen numerosas estimaciones, incluyendo el 14% del reciente informe del Panel Científico por la Amazonía, pero no encontramos ningún estudio definitivo que específicamente acote esta cuestión.

En el presente reporte, abordamos especificamente esta pregunta clave de cuánto de la Amazonía original se ha perdido ya.

Iniciamos con la primera estimación conocida del bosque original del bioma amazónico (es decir, antes de la llegada de los europeos): más de 647 millones de hectáreas (ver Imagen 1, abajo).

Luego, estimamos la pérdida total acumulada del bosque amazónico, desde la estimación original hasta la actualidad: más de 85 millones de hectáreas (ver Mapa Base).

Combinando ambos resultados, presentamos nuestra estimación independiente y enfocada en cuánto se ha perdido de la Amazonía original: un 13%.

Sin embargo, cabe señalar que el 31% de la Amazonía original se ha perdido en el tercio oriental del bioma amazónico (ver Imagen 2, abajo), por encima del punto de inflexión especulado. Este hallazgo es crítico porque, como se ha señalado anteriormente, el punto de inflexión probablemente se desencadenará en el este, ya que es la fuente del agua que fluye hacia la Amazonía central y occidental.

Bosque Amazónico Original

La Imagen 1 muestra el primer estimado conocido del bosque original amazónico, antes de la colonización europea. Note que utilizamos la definición más amplia de la Amazonía (biogeográfica; bioma amazónico) que abarca nueve países en lugar de la estricta cuenca amazónica.

Imagen 1. Bosque original del bioma amazónico. Datos: ACA/MAAP

Esto representa el esfuerzo más riguroso realizado a la fecha para recrear la Amazonía original. Por ejemplo, intentamos recrear el bosque original perdido por las represas antiguas.

El mapa tiene sólo tres clases: Bosque amazónico original, No Bosque natural (como las sabanas) y Agua.

Encontramos que el bosque amazónico original cubría más de 647 millones de hectáreas (647,607,020 ha).

De este total, el 61.4% se encontraba en Brasil, seguido de Perú (12%), Colombia (7%), Venezuela (6%) y Bolivia (5%). Los cuatro países restantes (Ecuador, Guyana, Surinam y Guayana Francesa) constituyen el 8% final.

Pérdida de Bosque Amazónico

La Imagen 2 muestra la pérdida total acumulada de bosque amazónico, de la estimación original hasta la fecha (2022).

Imagen 2. Pérdida total de bosque amazónico. Las líneas verticales indican la división de la Amazonía en tercios, en la Amazonía. Datos: ACA/MAAP.

Del bosque original señalado, documentamos la pérdida histórica de más de 85 millones de hectáreas (85,499,157 ha).

La mayor pérdida se produjo en Brasil (69.5 millones de hectáreas), seguido de Perú (4.7 millones de hectáreas), Colombia (4 millones de hectáreas), Bolivia (3.8 millones de hectáreas) y Venezuela (1.4 millones de hectáreas). Los cuatro países restantes (Ecuador, Guyana, Surinam y Guayana Francesa) constituyen los últimos 1.9 millones de hectáreas.

Comparándola con el bioma amazónico original, calculamos la pérdida histórica del 13.2% debido a la deforestación y otras causas.

Sin embargo, es importante destacar que el 30.8% de la Amazonía original se ha perdido en el tercio oriental del bioma amazónico (ver las líneas verticales en Imagen 2), por encima del rango del punto de inflexión especulado. Este hallazgo es crítico porque, como se menciona anteriormente, el punto de inflexión probablemente se desencadene en el este, ya que es la fuente del agua que fluye hacia la Amazonía central y occidental.

En contraste, encontramos que el 10.8% de la Amazonía original se ha perdido en el tercio central  y el 6.3% se ha perdido en el tercio occidental, ambos por debajo del umbral del punto de inflexión especulado.

Antecedentes

La Amazonía genera alrededor de la mitad de sus propias precipitaciones al reciclar la humedad hasta 6 veces cuando las masas de aire se desplazan desde el océano Atlántico en el este, a través de la cuenca amazónica hacia el oeste. Así, el bosque tropical desempeña un papel fundamental manteniéndose vivo, al reciclar el agua a través de sus árboles para generar precipitaciones de este a oeste.

Este ciclo hidrológico único ha mantenido históricamente los ecosistemas de bosques tropicales en vastas zonas alejadas de la fuente principal del océano.

De este modo, se plantea  ¿cuánta deforestación se requiere para degradar el ciclo al punto de no poder sostener estos bosques?  de ahí la hipótesis del punto de inflexión amazónico.

En este escenario, los bosques tropicales se transformarían en ecosistemas más secos, como los matorrales y la sabana.

El concepto de punto de inflexión en un inicio se refería a un cambio abrupto del ecosistema, pero ahora se cree que el cambio podría ocurrir gradualmente (30-50 años). Otros términos para este fenómeno incluyen “punto de quiebre” y «punto de no retorno.»

Cabe señalar que la Amazonía occidental, cerca de la cordillera de los Andes, probablemente mantenga sus bosques tropicales, ya que las corrientes de aire que fluyen sobre las montañas seguirían provocando la condensación del vapor de agua y su precipitación.

Metodología

Como núcleo de este trabajo, generamos dos estimaciones principales: el bosque amazónico original y la pérdida histórica y total de bosque amazónico.

Para ambos estimados, utilizamos el límite biogeográfico de la Amazonía (determinado por RAISG 2020), que abarca nueve países. Por lo tanto, utilizamos una definición más amplia de la Amazonía (bioma amazónico) en lugar de la estricta cuenca amazónica, que omite parte del bioma amazónico nororiental.

Para el bosque amazónico original, definimos tres clases principales: Bosque, No Bosque y Agua. Este análisis se basó en los datos de MapBiomas Brasil (colección 2 de 1990) con algunas modificaciones adicionales. El bosque original estaba compuesto por estas categorías de MapBiomas: Formación Forestal, Manglar, Bosque Inundado, Mosaico de Agricultura y Pastos. La categoría «no forestal» se compone de las siguientes categorías de MapBiomas: Formación de sabana, Formación de inundación natural no forestal, Pastizal y Otras formaciones no forestales. El agua se compone de las siguientes categorías de MapBiomas: Río, Lago, Océano y Glaciar.

Luego hicimos una serie de modificaciones con ediciones manuales basadas en datos de la Universidad de Maryland, el INPE (Terrabrasilis), imágenes satelitales de ArcGis, mosaicos de Planet, imágenes Landsat de Google Earth Engine de 1984-1990, y datos oficiales gubernamentales de varios países (Ministerio del Ambiente de Ecuador (MAE) y Perú (GeoBosques/MINAM), Sistema de Monitoreo Forestal y de Carbono/IDEAM de Colombia, Instituto Nacional de Investigaciones Espaciales de Brasil (INPE/Terrabrasilis), Dirección General de Gestión y Desarrollo Forestal de Bolivia (DGGDF), y el Servicio Nacional de Áreas Protegidas de Bolivia (SERNAP).

Como ejemplo de modificación importante, las áreas deforestadas y las represas se cambiaron a Bosque Original en base a un análisis de una imagen satelital antigua disponible para el área (1984-1990). También se corrigieron algunas clasificaciones erróneas, como parches de bosque en zonas claramente no forestales, se cambiaron a No Forestal (y viceversa) y que las zonas de bosque de montaña que se encontraban como agua se cambiaron a Bosque. También, las zonas agrícolas y urbanas en probables zonas de sabana se cambiaron a No Forestal. Se incorporaron datos adicionales sobre el agua procedentes de MapBiomas basados en 1985. En general, nos centramos en definir el bosque original lo mejor posible; las confusiones de datos entre las categorías de No Bosque y Agua no se trabajaron tan a fondo.

Para la pérdida histórica y total de bosque amazónico, utilizamos datos de la Universidad de Maryland. Específicamente, utilizamos primero su capa de datos «Tree Cover 2000″ (densidad de dosel >30%) para estimar la pérdida histórica de bosque (antes del 2000). Luego, añadimos los datos anuales de pérdida de bosque desde el 2001 hasta el 2021.

Finalmente, dividimos el bosque amazónico original en la pérdida histórica y total para estimar cuánto de la Amazonía original se ha perdido. Adicionalmente, delimitamos la Amazonía en tercios según la distancia de este a oeste. Luego, calculamos qué parte de la Amazonía original se perdió en cada una de estas tres secciones. También delimitamos la Amazonía en mitades y estimamos qué parte de la Amazonía original se perdió en cada sección.

Nota: los métodos definitivos están en versión en inglés.

Referencias

(en orden cronológico)

Sampaio, G., Nobre, C., Costa, M. H., Satyamurty, P., Soares‐Filho, B. S., & Cardoso, M. (2007). Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophysical Research Letters, 34(17).

Hansen, M. C. et. al. (2013) High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342.

Nobre et al. (2016) Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. PNAS, 113 (39).

Turubanova S., Potapov P., Tyukavina, A., and Hansen M. (2018) Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environmental Research Letters.

Lovejoy, T. E., & Nobre, C. (2018). Amazon Tipping Point. Science Advances, 4(2).

Lovejoy, T. E., & Nobre, C. (2019). Amazon tipping point: Last chance for action. Science Advances, 5 (12).

Bullock et. al. (2019) Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob Change Biol., 26.

Amigo, I. (2020) The Amazon’s fragile future. Nature, 578.

MapBiomas. 2020. MapBiomas Amazonia v2.0. https://amazonia.mapbiomas.org/.

Killeen (2021) A Perfect Storm in the Amazon Wilderness

Berenguer E. et. al. (2021) Ch 19. Drivers and ecological impacts of deforestation and forest degradation. In: Nobre C, Encalada et al. (Eds). Amazon Assessment Report 2021. United Nations Sustainable Development Solutions Network, New York, USA. Available from https://www.theamazonwewant.org/spa-reports

Hirota M et. al (2021) Science Panel for the Amazon, Ch 24. Resilience of the Amazon Forest to Global Changes: Assessing the Risk of Tipping Points. In: Nobre C, Encalada et al. (Eds). Amazon Assessment Report 2021. United Nations Sustainable Development Solutions Network, New York, USA. Available from https://www.theamazonwewant.org/spa-reports/

Wunderling et al (2022) Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest. PNAS 119 (32) e2120777119.

Agradecimientos

Este reporte es en memoria de Tom Lovejoy, quien ayudó a lanzar el concepto crítico de un punto de inflexión de la Amazonía. Desde el 2019, colaboramos con Tom en la evaluación de necesidades y en la investigación de fondo de este informe.

Agradecemos a Carmen Thorndike por ayudar con la revisión bibliográfica inicial, y a Carlos Nobre por la revisión del informe final. También agradecemos a J. Beavers (ACA), A. Folhadella (ACA), C. Josse (EcoCienica), M.E. Gutierrez (ACCA, S. Novoa (ACCA) y G.Palacios por sus comentarios adicionales.

Este trabajo se realizó gracias al apoyo de NORAD (Agencia Noruega de Cooperación al Desarrollo) y el ICFC (Fondo Internacional de Conservación de Canadá).

Cita

Finer M, Mamani N (2022) Punto de Inflexión en la Amazonía – ¿Dónde estamos?. MAAP: 164.

MAAP #160: Los Láseres Estiman el Carbono en la Amazonía – Misión GEDI de la NASA

Simulación de los láseres GEDI recogiendo datos. Fuente: UMD.

La misión GEDI de la NASA utiliza láseres para brindar estimaciones de la biomasa sobre el suelo y el carbono relacionado, a escala global.

Lanzado a finales del 2018 e instalado en la Estación Espacial Internacional, los láseres de GEDI devuelven una estimación de la densidad de la biomasa sobre el suelo con mayor precisión y resolución que la disponible anteriormente.

En el presente reporte, nos enfocamos en la Amazonía y damos un primer vistazo a los datos recientemente disponibles (Nivel 4B): Densidad de Biomasa sobre el Suelo, medida en megagramos por hectárea (Mg/ha) con una resolución de 1 kilómetro.

Consulte la página web de GEDI para mayor información sobre la misión, que se prolongará hasta enero del 2023. Asegúrese de ver este vídeo ilustrativo.

Mapa Base – Biomasa sobre el Suelo en la Amazonía

El Mapa Base muestra los datos del GEDI para los nueve países del bioma amazónico, mostrando la biomasa sobre el suelo, del período abril, 2019 a agosto, 2021.

Mapa Base. Densidad de biomasa sobre el suelo, en la Amazonía. Datos: NASA/UMD GEDI L4B. Haga doble clic para ampliar.

Destacamos importantes hallazgos iniciales:

  • Los datos aún no están completos, ya que hay algunas zonas en las que los láseres aún no han registrado datos (indicadas en blanco).
    g
  • Las zonas con mayor biomasa sobre el suelo y carbono relacionado (indicadas en verde oscuro y morado) incluyen:
    • Noreste amazónico: Esquina de Brasil, Surinam y Guayana Francesa.
    • Suroccidente amazónico: Suroeste de Brasil y Perú adyacente (ver zoom a continuación).
    • Noroeste amazónico: Norte de Perú, Ecuador y sureste de Colombia.

Zoom In – Sudoeste Amazónico

Para visualizar mejor los datos láser del GEDI, presentamos también un acercamiento en la Amazonía sudoccidental. Aunque las áreas deforestadas (y las sabanas naturales) se ilustran en amarillo y naranja, note la presencia circundante de bosques con alto contenido de carbono (verde y morado).

Zoom In – Sudoeste amazónico. Densidad de biomasa sobre el suelo. Datos: NASA/UMD GEDI L4B. Haga doble clic para ampliar.

Zoom Out – Escala Global

Hay que tener en cuenta que los bosques tropicales, incluyendo la Amazonía, tienen los niveles más altos de biomasa sobre el suelo, a nivel mundial.

Zoom Out – Escala global. Densidad de biomasa sobre el suelo. Datos: NASA/UMD GEDI L4B. Haga doble clic para ampliar.

Agradecimientos

Este trabajo se realizó gracias al apoyo de NORAD (Agencia Noruega de Cooperación al Desarrollo) y del ICFC (Fondo Internacional de Conservación de Canadá). Agradecemos a G.Palacios (ACA) por sus útiles comentarios a versiones anteriores de este reporte.

Cita

Finer M, Ariñez A (2022) Los Láseres Estiman el Carbono en la Amazonía – Misión GEDI de la NASA. MAAP: 160.

MAAP #158: Deforestación y Fuegos en la Amazonía 2021

Mapa Base de la pérdida de bosques en la Amazonía 2021. Hotspots de deforestación e incendios en todo el bioma amazónico. Datos: UMD/GLAD, ACA/MAAP.

Presentamos un análisis de los principales focos (hotspots) de pérdida de bosque amazónico 2021.

Estos datos (de la Universidad de Maryland) son únicos ya que identifican la pérdida de bosque causada por incendios, diferenciándola de la deforestación.

Así, por primera vez, los resultados incluyen ambos deforestación y incendios en toda la Amazonía.

El Mapa Base (ver a la derecha) y el Gráfico de Resultados (ver abajo) revelan varios hallazgos clave:

  • En el 2021, estimamos la pérdida de 2 millones de hectáreas de bosque primario en los nueve países del bioma amazónico. Este total representa una ligera disminución con respecto al 2020, pero es el sexto registro más alto.
    g
  • La gran mayoría de esta pérdida fue la deforestación (78%), con 1.57 millones de hectáreas. El total representa un ligero aumento con respecto al 2020, y es el quinto registro más alto. Esta deforestación afectó a todo el tramo del sur amazónico (sur de Brasil, Bolivia y Perú) y más al norte en Colombia.
    l
  • Esta deforestación se concentró en Brasil (73%), Bolivia (10%), Perú (8%) y Colombia (6%). En Brasil y Bolivia la deforestación fue la más alta desde el 2017. En Perú y Colombia la deforestación se redujo a partir del 2020, pero siguió siendo históricamente alta.
    h
  • Los incendios causaron directamente el resto de la pérdida de bosque primario (22%), lo que equivale a 436,000 hectáreas. Este total representa una disminución con respecto a la temporada de incendios severos del 2020, pero fue el cuarto registro más alto. Cabe destacar que más del 90% del impacto de los incendios se dio en solo dos países: Brasil y Bolivia. Note que el impacto de los incendios se concentró al sureste de cada país (estados de Mato Grosso y Santa Cruz, respectivamente).
    k
  • Desde el 2002, estimamos la deforestación de más de 27 millones de hectáreas de bosque primario, casi el tamaño del pais de Ecuador. Además, estimamos un impacto adicional de 6.7 millones de hectáreas debido a los incendios.

A continuación, nos enfocamos en los cuatro países con mayor deforestación (Brasil, Bolivia, Perú y Colombia), con mapas y análisis adicionales.

Gráfico de resultados de la pérdida de bosques en la Amazonía, 2002-21. Datos: UMD/GLAD, ACA/MAAP.

Respecto la deforestación, cabe destacar que, en toda la Amazonía, aumentó ligeramente en el 2021, continuando una tendencia gradual de cuatro años. El 2021 tuvo el quinto registro más alto de deforestación (sólo por detrás de los años 2002, 2004, 2005 y 2017).

En cuanto a los incendios, en el 2021 hubo una disminución con respecto a la severa temporada de incendios del 2020, pero fue el cuarto registro más alto (sólo por detrás de los años 2016, 2017 y 2020). Además, los últimos seis años registran las seis peores temporadas de incendios en la Amazonía.

En cuanto a la pérdida total de bosques (deforestación e incendios combinados), en el 2021 hubo una ligera disminución con respecto al 2020, no obstante fue el sexto registro más alto.

Mapa Base de Brasil, 2021. Focos de deforestación e incendios en la Amazonía brasileña. Datos: UMD/GLAD, ACA/MAAP.

Amazonía Brasileña

En el 2021, la Amazonía brasileña perdió 1.1 millones de hectáreas de bosque primario debido a la deforestación. Los incendios afectaron directamente a otras 293,000 hectáreas.

La deforestación fue el registro más alto desde el 2017 y también el pico de principios de la década del 2000 (sexto registro más alto). El impacto de los incendios fue relativamente alto (el quinto registro más alto), siendo los años pico el 2016, 2017 y 2020.

La deforestación se concentró a lo largo de las principales redes de carreteras, especialmente las carreteras 163, 230, 319 y 364 en los estados de Acre, Amazonas, Pará y Rondônia (ver Mapa Base de Brasil).

Los impactos directos de los incendios se concentraron en el estado sudoriental de Mato Grosso.

También, es importante señalar que en muchas zonas se registró una deforestación inicial seguida de un incendio para preparar la zona para agricultura o ganadería.

Mapa Base de Brasil, 2021. Focos de deforestación e incendios en la Amazonía brasileña. Datos: UMD/GLAD, ACA/MAAP.

 

Mapa Base de Bolivia. Hotspots de deforestación en la Amazonía boliviana. Datos: UMD/GLAD, ACA/MAAP

Amazonía Boliviana

En el 2021, la Amazonía boliviana perdió 161,000 hectáreas de bosque primario por la deforestación. Los incendios afectaron directamente a otras 106,000 hectáreas.

La deforestación registró el tercer pico más alto, sólo por detrás de los años 2016 y 2017. El impacto de los incendios fue el segundo más alto registrado, sólo por detrás del intenso 2020 (por tanto, los dos últimos años son los de registros más altos).

Tanto la deforestación como los incendios se concentraron en el departamento sudoriental de Santa Cruz (ver Mapa Base de Bolivia).

Gran parte de la deforestación se asoció a la agricultura a gran escala, mientras que los incendios, una vez más, afectaron a importantes ecosistemas naturales, sobre todo al Bosque Seco Chiquitano.

Mapa Base de Bolivia. Hotspots de deforestación en la Amazonía boliviana. Datos: UMD/GLAD, ACA/MAAP

 

Mapa base de Perú. Hotspots de deforestación en la Amazonía peruana. Datos: UMD/GLAD, ACA/MAAP.

Amazonía Peruana

En el 2021, la Amazonía peruana perdió 132,400 hectáreas de bosque primario por la deforestación. Los incendios afectaron directamente a otras 21,800 hectáreas.

La deforestación se redujo respecto a la cifra récord del 2020, no obstante fue el sexto registro más alto. El impacto de los incendios registró el segundo más alto (sólo por detrás del 2017).

La deforestación se concentró en el centro y sur de la Amazonía (regiones Ucayali y Madre de Dios, respectivamente) (ver Mapa Base del Perú).

Destacamos la rápida deforestación (365 hectáreas) para una nueva colonia menonita en el 2021, cerca del pueblo Padre Márquez (ver MAAP #149).

Además, note algunos hotspots adicionales en el sur (región Madre de Dios), estos son en gran medida por la expansión de la agricultura que ahora toma el lugar de la histórica minería aurífera.

De hecho, la deforestación por minería aurífera se ha reducido en gran medida gracias a las acciones del Estado peruano, no obstante, esta actividad ilegal sigue amenazando varias zonas clave y territorios indígenas (MAAP #154).

Rápida deforestación (365 hectáreas) para una nueva colonia menonita en 2021, cerca del pueblo Padre Márquez. Datos: Planet.

 

Mapa base de Colombia. Hotspots de deforestación al noroeste de la Amazonía colombiana. Datos: UMD/GLAD, ACA/MAAP, FCDS.

Amazonía Colombiana

En el 2021, la Amazonía colombiana perdió 98,000 hectáreas de bosque primario por la deforestación. Los incendios afectaron directamente a un adicional de 9,000 hectáreas.

La deforestación y los incendios se redujeron con respecto al año anterior, pero ambos registros fueron los cuartos más altos, siguiendo la tendencia de la elevada pérdida de bosques y asociados  incendios, desde el Acuerdo de Paz del 2016.

Como se describió en informes anteriores (ver MAAP #120), el Mapa Base de Colombia muestra que sigue habiendo un «arco de deforestación» al noroeste de la Amazonía colombiana (departamentos de Caquetá, Meta y Guaviare).

Este arco afecta a numerosas áreas protegidas (especialmente los Parques Nacionales Tinigua y Chiribiquete) y las reservas indígenas (especialmente Yari-Yaguara II y Nukak Maku).

Los principales drivers de la deforestación en la Amazonía colombiana son el acaparamiento de tierras, la expansión de la infraestructura vial y la ganadería extensiva.

 

Anexo

Metodología

El análisis se basó en los datos de pérdida de bosque anual con una resolución de 30 metros, elaborados por la Universidad de Maryland y presentados también por Global Forest Watch. Por primera vez, este conjunto de datos distinguió la pérdida de bosque causada directamente por el fuego (note que prácticamente todos los incendios de la Amazonía son por causas antropogénicas). El resto de la pérdida de bosque quedó identificada por deforestación, con la única excepción de los fenómenos naturales como los desprendimientos de tierra, las tormentas de viento y los meandros de los ríos

Cabe destacar que aplicamos un filtro para calcular solo la pérdida de bosque primario, al intersecar los datos de pérdida de cobertura forestal con el conjunto de datos adicional «bosques tropicales húmedos primarios» a partir del 2001 (Turubanova et al., 2018). Para más detalles sobre esta parte de la metodología, ver el blog técnico de Global Forest Watch (Goldman y Weisse, 2019).

Nuestro rango geográfico para la Amazonía es un híbrido diseñado para una máxima inclusión: límite biogeográfico (según la definición de RAISG) para todos los países, a excepción de Bolivia donde usamos el límite de la cuenca amazónica.

Para identificar los focos de deforestación, realizamos una estimación de densidad Kernel. Este tipo de análisis calcula la magnitud por unidad de área de un fenómeno particular, en este caso, la pérdida de cobertura de bosque. Realizamos este análisis utilizando la herramienta Kernel Density de la Caja de Herramientas de Analista Espacial del software ArcGIS. Usamos los siguientes parámetros:

Radio de búsqueda: 15000 unidades de capa (metros).
Función de Densidad de Kernel: función kernel cuártica
Tamaño de celda en el mapa: 200 x 200 metros (4 hectáreas).
Todo lo demás se dejó con la configuración por defecto.

Para el Mapa Base, usamos los siguientes porcentajes de concentración: Medio: >5%; Alto: >7%; Muy Alto: >14%.

Agradecimientos

Agradecemos a A. Gómez (FCDS), R. Botero (FCDS) y G. Palacios (ACA) por sus útiles comentarios a los textos e imágenes en versiones anteriores a este reporte.

Este trabajo se realize gracias al apoyo de NORAD (Agencia Noruega de Cooperación para el Desarrollo) y al ICFC (Fondo Internacional de Conservación de Canadá).

Cita

Finer M, Mamani N (2022) Deforestación y Fuegos en la Amazonía 2021. MAAP: 153.

MAAP #157: Carreteras Nuevas y En Propuesta en la Amazonía Occidental

Mapa Base 1, Carreteras en la Amazonía. Datos: ACA/MAAP, MTC (Peru), MINAM (Peru), MI (Brazil), ABT (Bolivia), GAD Napo (Ecuador), FCDS (Colombia), EcoCiencia (Ecuador), Diálogo Chino, CSF, RAISG, ACCA, ACEAA (Bolivia).

La deforestación extensiva, especialmente a lo largo de las carreteras, ha convertido a la Amazonía brasileña en una fuente neta emisora de carbono (ver el MAAP #144).

Afortunadamente, el vasto bioma amazónico en los nueve países sigue siendo un sumidero neto de carbono, en gran parte gracias al núcleo aún intacto de la Amazonía occidental.

La mayor amenaza a largo plazo para este núcleo amazónico serían las nuevas carreteras, ya que son una de las principales causas de la apertura de áreas extensas (y anteriormente remotas) a la deforestación y la degradación (Vilela et al 2020).

Aquí, presentamos un análisis inicial de las carreteras nuevas y en propuesta en la Amazonía occidental.

Aunque es difícil definir qué proyectos propuestos saldrían adelante, encontramos la amenaza de una posible expansión de carreteras en el núcleo de la Amazonía occidental (ver Mapa Base 1).

Además, incluso centrándonos sólo en los proyectos más avanzados (o discutido más activamente), encontramos el riesgo de un importante impacto negativo.

A continuación, discutimos nuestro Mapa Base inicial de carreteras en la Amazonía, y presentamos una serie de acercamientos de pantalla (zooms) que muestran el bosque primario en riesgo si los proyectos de carreteras seleccionados siguen adelante.

Mapa Base de Carreteras en la Amazonía

El Mapa Base 2 destaca las carreteras nuevas, propuestas y existentes (líneas rojas, amarillas y negras, respectivamente), en relación con las áreas protegidas y los territorios indígenas. Nos centramos en el núcleo de la Amazonía occidental (Bolivia, Colombia, Ecuador, Perú y el oeste de Brasil) que sigue estando en gran parte intacto.

La mayoría de las carreteras nuevas se construyeron en los últimos cinco años y se digitalizaron a partir de imágenes satelitales. Note que en el caso de algunas de estas carreteras nuevas, sólo se registra la construcción inicial de un camino en bruto y que impactos futuros son posibles por la futura pavimentación de la carretera.

La mayoría de las carreteras propuestas se obtuvieron de la información de portales oficiales del gobierno. Como se ha señalado anteriormente, es difícil definir qué proyectos de carreteras propuestos serán ejecutados. No obstante, está claro que el núcleo restante de la Amazonía occidental quedaría dividido con la cartera de carreteras propuestas.

Mapa Base 2, Carreteras en la Amazonía, en relación con las áreas protegidas y los territorios indígenas. Datos: ACA/MAAP, MTC (Peru), MINAM (Peru), MI (Brazil),  ABT (Bolivia), GAD Napo (Ecuador), FCDS (Colombia), EcoCiencia (Ecuador), Diálogo Chino, CSF, RAISG, ACCA, ACEAA (Bolivia).

Zooms de Carreteras de Alto Impacto: Nuevas y En Propuesta

En esta sección, nos enfocamos en los proyectos que actualmente están más avanzados o en discusión (ver las letras A-F en los Mapas Base). Mostramos sus impactos potenciales sobre vastas secciones del núcleo de la Amazonía occidental, incluyendo áreas protegidas y territorios indígenas.

A. Carretera Boca Manu (Perú)

La carretera nueva/en propuesta a la que nos referimos aquí como la carretera de Boca Manu serviría como una nueva conexión entre las regiones de Cusco y Madre de Dios. Destaca por su sensible ruta entre el Parque Nacional del Manu y la Reserva Comunal Amarakaeri hasta Boca Manu, y desde allí entre la Concesión de Conservación Los Amigos y la Reserva Comunal Amarakaeri hasta Boca Colorado. Además de impactar probablemente estas áreas protegidas y dicha concesión, la carretera también podría impactar al territorio cercano de los grupos indígenas en aislamiento voluntario. Consulte este informe reciente de Diálogo Chino para obtener más información sobre esta carretera y su situación e impactos.

Zoom A. Carretera Boca Manu. Datos: MTC, MINAM, ACA, ACCA, RAISG.

B. Carretera Pucallpa – Cruzeiro do Sul (Perú – Brasil)

Esta carretera propuesta conectaría la ciudad peruana de Pucallpa con el límite de la red de carreteras en el oeste de Brasil, cerca de la ciudad de Cruzeiro do Sul. Aunque la ruta potencial tiene varias opciones, seguramente atravesaría o se acercaría al Parque Nacional Sierra del Divisor del lado peruano y al adyacente Parque Nacional Serra do Divisor del lado brasilero. Esta zona se caracteriza por sus vastos bosques primarios, por lo que la creación de una nueva ruta binacional que conecte los frentes de deforestación de cada país podría, obviamente, desencadenar impactos significativos. Consulte este reciente reporte de Diálogo Chino para obtener más información la situación e impactos de esta carretera.

Zoom B. Carretera Pucallpa – Cruzeiro do Sul. Datos: MTC, MINAM, ACA, CSF, Diálogo Chino, RAISG.

C. Carretera Yurúa (Perú)

La carretera nueva/propuesta a la que nos referimos aquí como la carretera de Yurúa conectaría las localidades peruanas de Nueva Italia (en río Ucayali) y Breu (en río Yurúa). Esta ruta de 200 km se construyó originalmente como carretera maderera a finales de la década de 1980 para acceder a zonas remotas de la Amazonía peruana central, pero a inicios de la década del 2000 ya estaba en mal estado. Un reciente análisis del MAAP (ver MAAP #146) encontró que entre el 2010 y 2021 gran parte de la ruta había sido rehabilitada, lo que provocó una elevada deforestación en el trayecto. Si esta carretera llegara a ser pavimentada, es probable que los impactos sigan aumentando, incluso con las comunidades nativas a lo largo de la ruta. Ver MAAP #146 para obtener más información sobre el estado e impactos de esta carretera.

Zoom C. Carretera Yurúa. Datos: MTC, MINAM, ACA, ACCA, RAISG.

D. Carretera Genaro Herrera – Angamos (Perú)

Esta nueva/propuesta carretera se construiría a partir de una antigua pista que atraviesa los vastos bosques que conectan las localidades de Genaro Herrera y Angamos, en la región de Loreto. En el 2021, se inició el desbroce a lo largo de esta ruta, avanzando más de 100 kilómetros desde ambos extremos. Si se completa y se pavimenta, el proyecto final de la carretera afectaría a las áreas protegidas de ambos lados (incluida la Reserva Nacional Matsés, al sur) y supondría una gran amenaza para los indígenas en aislamiento voluntario que, según se informa, viven al norte. Véase este informe reciente para obtener más información sobre esta carretera y su situación e impactos.

Zoom D. Carretera Genaro Herrera – Angamos. Datos: MTC, ACA, RAISG.

E. Carretera Cachicamo – Tunia (Parque Nacional Chiribiquete, Colombia)

El Parque Nacional Natural Serranía de Chiribiquete, situado en el corazón de la Amazonía colombiana, registra una creciente presión de deforestación, en parte debido a la expansión de carreteras alrededor e incluso dentro del parque. Por ejemplo, la carretera Cachicamo-Tunia, construida en el 2020, ha desencadenado un nuevo frente de deforestación al noroeste del parque. Note que esta carretera también está afectando a una reserva indígena adyacente.

Zoom E. Carretera Cachicamo – Tunia. Datos: FCDS, RAISG, ACA.

F.  Carretera Manaus – Porto Velho (BR-319, Brasil)

Posiblemente el proyecto más controvertido de la lista: la pavimentación del tramo medio de la BR-319 en el corazón de la Amazonía brasileña. Esta carretera de casi 900 km conecta la remota ciudad de Manaos (a la que sólo se puede llegar por aire o rio) con el resto de la red de carreteras brasileñas en Humaitá y Porto Velho, al sur. Se construyó esta carretera a principios de la década de 1970, pero se abandonó y quedó intransitable a finales de la década de 1980, aislando a Manaos una vez más. Desde el 2015, un programa de mantenimiento básico ha hecho que la carretera sea más transitable, pero el proyecto principal sigue siendo la pavimentación del tramo medio de 400 km que pasa por el núcleo de la Amazonía occidental. Esta pavimentación conectaría efectivamente a Manaos con las carreteras existentes en el sur, y muy probablemente desencadenaría una pérdida masiva de bosques al extender el arco de deforestación hacia el norte, incluso dentro y alrededor de las áreas protegidas que rodean la carretera. Este proyecto de carretera ha sido objeto de numerosos informes de prensa recientes, incluyendo artículos de investigación del Washington Post y El País.

Zoom F. Carretera Manaus – Porto Velho. Datos: Ministério da Infraestrutura, ACA, RAISG.

G. Carretera Ixiamas – Chivé (Bolivia)

En los últimos años, Bolivia ha buscado financiamiento para una carretera de 250 km que unirá a la actual ciudad fronteriza de Ixiamas con la aislada ciudad de Chivé, situada cerca de la frontera peruana en el río Madre de Dios. Esta carretera atravesaría vastas extensiones de bosque primario amazónico y de sabana, en el norte del departamento de La Paz, incluyendo la recién creada Área de Conservación Municipal Bajo Madidi y el territorio indígena Tacana II.

Zoom G. Carretera Ixiamas – Chivé. Datos: ABT, ACEAA, ACA, RAISG.

Metodología

Nuestros mapas y análisis se centran en la Amazonía occidental (Bolivia, Colombia, Ecuador, Perú y el oeste de Brasil).

La mayoría de las nuevas carreteras se construyeron en los últimos cinco años y se digitalizaron a partir de imágenes satelitales. Note que, para algunas de estas nuevas carreteras, sólo se ha iniciado la rehabilitación/mejora inicial de un camino en mal estado y todavía hay potencial para futuros impactos por la pavimentación.

La mayoría de las carreteras propuestas se obtuvieron de la información de portales oficiales del gobierno (y se complementaron con informes de la sociedad civil).

Damos crédito a las siguientes fuentes:
Ministerio de Transportes y Comunicaciones (Perú), Geobosques/MINAM (Perú), Ministério da Infraestrutura (Brasil), Autoridad de Fiscalización y Control Social de Bosques y Tierra – ABT (Bolivia), Gobierno Autónomo Descentralizado Provincial de Napo (Ecuador), Fundación para la Conservación y el Desarrollo Sostenible – FCDS (Colombia), Fundación EcoCiencia (Ecuador), Diálogo Chino, Conservation Strategy Fund, RAISG, Conservación Amazónica – ACCA (Perú), Conservación Amazónica – ACEAA (Bolivia), y Amazon Conservation (digitalización de algunas carreteras nuevas y en propuesta).

Referencia:
Vilela et al (2020) A better Amazon road network for people and the environment. PNAS 17 (13) 7095-7102.

Agradecimientos

Damos especial gracias a Diálogo Chino por su apoyo a este reporte. También le agredecemos a E. Ortiz, S. Novoa, S. Villacis, D. Larrea, M. Terán, D. Larrea y G. Palacios por sus útiles comentario en versiones anteriores del texto e imágenes.

Cita

Finer M, Mamani N (2022) Carreteras Nuevas y En Propuesta en la Amazonía Occidental. MAAP: 157.