MAAP #217: Carbono en la Amazonía (parte 2): Zonas de carbono pico

Figura 1. Ejemplo de zonas carbono pico en el sur de Perú y el oeste adyacente de Brasil. Datos: Planet.

En la parte 1 de esta serie (MAAP #215), presentamos un nuevo recurso fundamental (Planet Forest Carbon Diligence) que proporciona estimaciones de la densidad de carbono sobre el suelo con una resolución sin precedentes de 30 metros.

En ese reporte, mostramos que la Amazonía contiene 56.800 millones de toneladas métricas de carbono sobre el suelo (a partir del 2022), y describimos patrones clave en los nueve países del bioma amazónico durante la última década.

Aquí, en la parte 2, nos centramos en las zonas con picos de carbono en la Amazonía que albergan los mayores niveles de carbono sobre el suelo.

Estas zonas de carbono pico corresponden al tercio superior de los niveles de densidad de carbono sobre el suelo (>140 toneladas métricas por hectárea).1

Es probable que hayan sufrido una degradación mínima (como la tala selectiva, los incendios y los efectos de borde/fragmentación)2 y, por lo tanto, son una buena representación de los bosques de alta integridad.

La Figura 1 muestra un ejemplo importante de zonas de carbono pico en el sur de Perú y el oeste adyacente de Brasil.

Las zonas con picos de carbono se encuentran a menudo en bosques primarios remotos de áreas protegidas y territorios indígenas, pero algunas están situadas en concesiones forestales (es decir, concesiones madereras) o tierras no designadas (también denominadas bosques públicos no designados).

Nuestro objetivo en este informe es aprovechar los datos sin precedentes sobre el carbono sobre el suelo para reforzar la importancia de estas áreas designadas y llamar la atención sobre las restantes tierras no designadas.

A continuación, detallamos las principales conclusiones y nos centramos en las zonas de carbono pico en el noreste y el suroeste de la Amazonía.

Zonas de carbono pico en la Amazonía

El Mapa Base que figura a continuación ilustra nuestros hallazgos principales.

Las zonas con picos de carbono (>140 toneladas métricas por hectárea; indicadas en rosado) se concentran en el suroeste y el noreste de la Amazonía, cubriendo 27,8 millones de hectáreas (11 millones ha en el suroeste y 16,8 millones ha en el noreste).k

Mapa base. Densidad de carbono sobre el suelo según los datos de Planet Forest Carbon Diligence en el bioma amazónico para el año 2022. Datos: Planet.

En el suroeste de la Amazonía, las zonas de carbono pico se encuentran en el sur y centro de Perú, y en el adyacente oeste de Brasil.

En el noreste de la Amazonía, las zonas de carbono pico se encuentran en el noreste de Brasil, gran parte de la Guayana Francesa y partes de Surinam.

Por países, Brasil y Perú tienen la mayor superficie de pico de carbono (10,9 millones y 10,1 millones de hectáreas respectivamente), seguidos por la Guayana Francesa (4,7 millones de ha) y Surinam (2,1 millones de ha).

Las áreas protegidas y los territorios Indígenas cubren gran parte (61%) de la superficie máxima de carbono (16,9 millones de ha).

El 39% restante permanece desprotegido, y podría decirse que está amenazado, en tierras no designadas (9,4 millones de ha) y concesiones forestales (1,5 millones de ha), respectivamente.

Además, se encuentran áreas con alto contenido de carbono (>70 toneladas métricas por hectárea; indicado por amarillo-verdosa en el Mapa Base) en cada uno de los nueve países del bioma amazónico, especialmente Colombia, Ecuador, Bolivia, Venezuela y Guyana.

Suroeste Amazónico

­Sur de Perú

Figura 2a. Zona de carbono pico en el sur de la Amazonía peruana. Datos: Planet, SERNANP, RAISG.

La Figura 2a muestra la zona de máximo carbono, que abarca 7,9 millones de hectáreas en el sur de Perú (regiones de Madre de Dios, Cusco y Ucayali) y el suroeste de Brasil (Acre).

Varias áreas protegidas (como los Parques Nacionales de Manu y Alto Purús, y la Reserva Comunal Machiguenga) anclan esta zona.

También alberga numerosos territorios indígenas (como Mashco Piro, Madre de Dios y las Reservas Indígenas Kugapakori, Nahua, Nanti y otros).

Figura 2b. Zonas con carbono pico (delineadas en rosado), categorizadas por designación de tierras en el sur de Perú y el oeste adyacente de Brasil. Datos: Planet, NICFI, SERNANP, SERFOR, RAISG.

La Figura 2b destaca las principales designaciones de tierras dentro de la zona de carbono pico del sur de Perú.

Las áreas protegidas y los territorios indígenas cubren el 77% de esta área (verde y marrón, respectivamente).

El 23% restante podría considerarse amenazado, ya que se encuentra en concesiones forestales o tierras no designadas (naranja y rojo, respectivamente). Por lo tanto, estas zonas son candidatas ideales a una mayor protección para mantener sus niveles máximos de carbono.

Perú Centro

Figura 3a. Zona con pico de carbono en la Amazonía central peruana. Datos: Planet, SERNANP, RAISG.

La Figura 3a muestra la zona con picos de carbono en la Amazonía central peruana, que abarca 3,1 millones de hectáreas en las regiones de Ucayali, Loreto, Huánuco, Pasco y San Martín.

Varias áreas protegidas (como los Parques Nacionales Sierra del Divisor, Cordillera Azul, Río Abiseo y Yanachaga-Chemillén, y la Reserva Comunal El Sira) anclan esta zona.

También alberga numerosos territorios indígenas (como las Reservas Indígenas Kakataibo, Isconahua y Yavarí Tapiche).

Figura 3b. Zona con pico de carbono (delineada en rosado), categorizadas por designación de tierras en el centro de Perú. Datos: Planet, NICFI, SERNANP, SERFOR, RAISG.

En la Figura 3b se destacan las principales designaciones de tierras dentro de la zona de pico de carbono del centro de Perú.

Las áreas protegidas y los territorios indígenas cubren el 69% de esta área (verde y marrón, respectivamente).

El 31% restante podría considerarse amenazado, ya que se encuentran en concesiones forestales o tierras no designadas (naranja y rojo, respectivamente), y son candidatas ideales para una mayor protección.

 

Notas

1 Seleccionamos este valor (33% superior) para capturar las áreas de carbono sobre el suelo más elevadas e incluir una gama de áreas de alto contenido en carbono. Otros análisis podrían centrarse en valores diferentes, como el 10% o el 20% más alto de carbono sobre el suelo.

2  Un trabajo reciente ha documentado una fuerte relación entre la tala selectiva y la pérdida de carbono sobre el suelo (Csillik et al. 2024, PNAS). La relación entre los bordes de los bosques y el carbono se presenta en Silva Junior et al, Science Advances.

Cita

Finer M, Mamani N, Anderson C, Rosenthal A (2024) Carbono en la Amazonía (parte 2): Zonas de carbono pico. MAAP #217.

MAAP #213: Estimación del carbono en las áreas protegidas y territorios indígenas de la Amazonia

Imagen introductoria. Captura de pantalla de la aplicación (app) de carbono forestal OBI-WAN.

En un informe reciente (MAAP #199), presentamos la versión actualizada de los datos GEDI de la NASA,1 que utiliza láseres a bordo de la Estación Espacial Internacional para proporcionar estimaciones de vanguardia sobre el carbono aéreo a escala mundial, incluida nuestra área focal, la Amazonía.

Sin embargo, estos láseres aún no han alcanzado una cobertura total, lo que deja considerables vacíos en los datos y en los mapas resultantes.

En el presente reporte, mostramos dos nuevas herramientas que nos permiten llenar esos vacíos y proporcionar estimaciones detalladas de la biomasa aérea en zonas específicas, que pueden convertirse luego en estimaciones del carbono sobre el suelo.

El primero es la aplicación OBI-WAN para reportar el carbono forestal (ver la Imagen introductoria), que utiliza la inferencia estadística para producir estimaciones medias, totales y de incertidumbre de las líneas de base de biomasa en cualquier escala (desde la local hasta mundial).2

El segundo es un producto fusionado de las misiones GEDI y TanDEM-X.3 La combinación de lidar (GEDI) y radar (TanDEM-X) ha comenzado a producir mapas inigualables que combinan la capacidad del lidar para recuperar la estructura forestal y la capacidad del radar para ofrecer una cobertura de pared a pared con múltiples resoluciones (ver Figuras 1-5 a continuación para ver ejemplos con una resolución de 25 m).

Empleando estos dos herramientas, nos centramos en la estimación del carbono sobre el suelo para ejemplos seleccionados de dos designaciones críticas de tierras en la Amazonía: áreas protegidas y territorios indígenas. Ambas son fundamentales para la conservación a largo plazo del núcleo de la Amazonía (MAAP #183). Se espera que el suministro de datos precisos para estas áreas proporcione incentivos adicionales para su conservación a largo plazo.

Seleccionamos 5 áreas focales (3 parques nacionales y 2 Territorios Indígenas) en la Amazonía para demostrar el poder de estos datos. Estas áreas juntas albergan un total de 1,400 millones de toneladas métricas de carbono sobre el suelo.

  • Áreas protegidas (Parques Nacionales)
    Parque Nacional Chirbiquete (Amazonía colombiana)
    Parque Nacional Manu (Amazonía peruana)
    Parque Nacional Madidi (Amazonía boliviana)
    k
  • Territorios Indígenas
    Territorio Indígena Kayapó (Amazonía brasileña)
    Territorio Indígena Barranco Chico (Amazonía peruana)

Áreas focales

Como se ha indicado anteriormente, las estimaciones de carbono que figuran a continuación se basan en las estimaciones de biomasa sobre el suelo de la aplicación de carbono forestal OBI-WAN y de los datos de GEDI-TanDEM-X. Las figuras 1 a 5 se basan en GEDI-TanDEM-X, con una resolución de 25 metros.

Parques Nacionales

Parque Nacional de Chiribiquete (Amazonía colombiana)

El Parque Nacional de Chirbiquete abarca más de 4,2 millones de hectáreas en el corazón de la Amazonía colombiana (departamentos de Guaviare y Caquetá). Ambos datos convergen en la estimación de unas 600 toneladas métricas de biomasa sobre el suelo, lo que equivale a más de 300 millones de toneladas métricas de carbono sobre el suelo en todo el parque (80,5 toneladas de carbono por hectárea). La Figura 1 muestra la distribución espacial detallada de esta biomasa en el Parque Nacional Chirbiquete. Note que los datos de GEDI-TanDEM-X se pierden al extremo occidental del parque.

Figura 1. Biomasa sobre el suelo en el Parque Nacional de Chiribiquete (Amazonía colombiana). Datos: GEDI-TanDEM-X.

Parque Nacional del Manu (Amazonía peruana)

Figura 2. Biomasa sobre el suelo en el Parque Nacional Manu (Amazonía peruana). Datos: GEDI-TanDEM-X.

El Parque Nacional Manu abarca más de 1,7 millones de hectáreas en el sur de la Amazonía peruana (regiones de Madre de Dios y Cusco).

Ambos datos convergen en la estimación de más de 450 toneladas métricas de biomasa sobre el suelo, lo que equivale a más de 215 millones de toneladas métricas de carbono sobre el suelo en todo el territorio (126,8 toneladas de carbono por hectárea).

La Figura 2 muestra la distribución espacial detallada de esta biomasa en el Parque Nacional Manu.

Parque Nacional Madidi (Amazonía boliviana)

Figura 3. Biomasa sobre el suelo en el Parque Nacional Madidi (Amazonía boliviana). Datos: GEDI-TanDEM-X

El Parque Nacional y Área de Manejo Integrado Madidi abarca cerca de 1,9 millones de hectáreas en la Amazonía occidental boliviana (departamento de La Paz), e incluye un gradiente de pisos altitudinales desde tierras bajas hasta montañas por encima de los 6 mil metros en altitud.

Ambos  datos convergen en la estimación de más de 350 toneladas métricas de biomasa sobre el suelo, lo que equivale a más de 160 millones de toneladas métricas de carbono aéreo en todo el área protegida (85,3 toneladas de carbono por hectárea).

La Figura 3 muestra la distribución espacial detallada de esta biomasa en el Parque Nacional Madidi. Note que los datos del GEDI-TanDEM-X se pierden al extremo sur, justamente en las partes altas del área protegida.

Territorios Indígenas

Territorio indígena Kayapó (Amazonia brasileña)

El Territorio Indígena Kayapó abarca más de 3,2 millones de hectáreas en la Amazonía oriental brasileña (estado de Pará).

Ambos datos convergen en la estimación de más de 413,000 toneladas métricas de biomasa aérea, lo que equivale a más de 198 millones de toneladas métricas de carbono sobre el suelo en todo el territorio.

La Figura 4 muestra la distribución espacial detallada de esta biomasa en Kayapó y en cuatro territorios indígenas vecinos.

En total, en estos cinco territorios (10,4 millones de hectáreas) los datos convergen en más de 1.500 millones de toneladas métricas de biomasa aérea y 730 millones de toneladas métricas de carbono sobre el suelo (70 toneladas por hectárea).

Figura 4. Biomasa sobre el suelo en Kayapó y territorios indígenas vecinos (Amazonia brasileña). Datos: GEDI-TanDEM-X.

Comunidad Nativa Barranco Chico (Amazonía peruana)

La Comuniad Nativa Barranco Chico abarca más de 12,600 hectáreas en el sur de la Amazonía peruana (región de Madre de Dios).

Ambos datos convergen en la estimación de más de 2 millones de toneladas métricas de biomasa aérea, lo que equivale a más de 1 millón de toneladas métricas de carbono sobre el suelo.

La Figura 5 muestra la distribución espacial detallada de esta biomasa en Barranco Chico y en dos Comunidades Nativas vecinas (Puerto Luz y San José de Karene).

En total, en estos tres territorios (casi 90,000 hectáreas), los datos convergen en más de 19 millones de toneladas métricas de biomasa aérea y más de 9 millones de toneladas métricas de carbono sobre el suelo (102 toneladas por hectárea).

Figura 5. Biomasa sobre el suelo en Barranco Chico y Territorios Indígenas vecinos (Amazonía peruana). Datos: GEDI-TanDEM-X

Notas

1 GEDI L4B Gridded Aboveground Biomass Density, Versión 2.1. Estos datos se miden en megagramos de biomasa aérea por hectárea (Mg/ha) a una resolución de 1 kilómetro, con el periodo de abril de 2019 a marzo de 2023. Esto nos sirve como estimación de las reservas de carbono aéreo, con la hipótesis científica de que el 48% de la biomasa registrada es carbono.

El enfoque se basa en el artículo científico fundacional de Patterson et al., (2019) y es utilizado por la misión GEDI para estimar la biomasa media y total en todo el mundo (Dubayh et al., 2022, Armston et al., 2023). El método considera la distribución espacial de los rastros de GEDI dentro de un determinado límite especificado por el usuario para inferir el componente de error de muestreo de la incertidumbre total que también incluye el error de los modelos L4A de GEDI utilizados para predecir la biomasa a partir de las estimaciones de la altura del dosel (Keller et al., 2022). Para más información sobre la aplicación OBI-WAN, ver Healey y Yang 2022.

3 GEDI-TanDEM-X (GTDX) es una fusión de imágenes GEDI Versión 2 y TanDEM-X (TDX) de radar interferométrico de apertura sintética (InSAR) (de enero de 2011 a diciembre de 2020). También incorpora datos anuales de pérdida de bosque para tener en cuenta la deforestación durante este periodo. Los mapas de biomasa aérea del GTDX se elaboraron a partir de un marco basado en un modelo jerárquico generalizado (GHMB) que utiliza la biomasa del GEDI como datos de entrenamiento para establecer modelos de estimación de la biomasa basados en la altura del dosel del GTDX. La combinación de lidar (GEDI) y radar (TanDEM-X) ha comenzado a producir mapas inigualables que combinan la capacidad del lidar para recuperar la estructura del bosque y la capacidad del radar para ofrecer una cobertura de pared a pared (Qi et al.,2023, Dubayah et a;., 2023). Este producto fusionado es un mapa sin huecos de pared a pared que se produjo en múltiples resoluciones: 25m, 100m y 1ha. El procesamiento en curso sobre la región pantropical estará disponible en los próximos meses, pero algunas geografías ya han sido mapeadas, como la mayor parte de la cuenca del Amazonas (Dubayah et al., 2023). Los datos que hemos utilizado están a disposición del público.

Referencias

Armston, J., Dubayah, R. O., Healey, S. P., Yang, Z., Patterson, P. L., Saarela, S., Stahl, G., Duncanson, L., Kellner, J. R., Pascual, A., & Bruening, J. (2023). Global Ecosystem Dynamics Investigation (GEDI)GEDI L4B Country-level Summaries of Aboveground Biomass [CSV]. 0 MB. https://doi.org/10.3334/ORNLDAAC/2321

Dubayah, R. O., Armston, J., Healey, S. P., Yang, Z., Patterson, P. L., Saarela, S., Stahl, G., Duncanson, L., Kellner, J. R., Bruening, J., & Pascual, A. (2023). Global Ecosystem Dynamics Investigation (GEDI)GEDI L4B Gridded Aboveground Biomass Density, Version 2.1 [COG]. 0 MB. https://doi.org/10.3334/ORNLDAAC/2299

Dubayah, R., Armston, J., Healey, S. P., Bruening, J. M., Patterson, P. L., Kellner, J. R., Duncanson, L., Saarela, S., Ståhl, G., Yang, Z., Tang, H., Blair, J. B., Fatoyinbo, L., Goetz, S., Hancock, S., Hansen, M., Hofton, M., Hurtt, G., & Luthcke, S. (2022). GEDI launches a new era of biomass inference from space. Environmental Research Letters, 17(9), 095001. https://doi.org/10.1088/1748-9326/ac8694

Dubayah, R., Blair, J. B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, J., Luthcke, S., Armston, J., Tang, H., Duncanson, L., Hancock, S., Jantz, P., Marselis, S., Patterson, P. L., Qi, W., & Silva, C. (2020). The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Science of Remote Sensing, 1, 100002. https://doi.org/10.1016/j.srs.2020.100002

Healey S, Yang Z (2022) The OBIWAN App: Estimating Property-Level Carbon Storage Using NASA’s GEDI Lidar. https://www.fs.usda.gov/research/rmrs/understory/obiwan-app-estimating-property-level-carbon-storage-using-nasas-gedi-lidar

Kellner, J. R., Armston, J., & Duncanson, L. (2022). Algorithm Theoretical Basis Document for GEDI Footprint Aboveground Biomass Density. Earth and Space Science, 10(4), e2022EA002516. https://doi.org/10.1029/2022EA002516

Dubayah, R.O., W. Qi, J. Armston, T. Fatoyinbo, K. Papathanassiou, M. Pardini, A. Stovall, C. Choi, and V. Cazcarra-Bes. 2023. Pantropical Forest Height and Biomass from GEDI and TanDEM-X Data Fusion. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/2298

Qi, W., J. Armston, C. Choi, A. Stovall, S. Saarela, M. Pardini, L. Fatoyinbo, K. Papathanasiou, and R. Dubayah. 2023. Mapping large-scale pantropical forest canopy height by integrating GEDI lidar and TanDEM-X InSAR data. Research Square. https://doi.org/10.21203/rs.3.rs-3306982/v1

Krieger, G., M. Zink, M. Bachmann, B. Bräutigam, D. Schulze, M. Martone, P. Rizzoli, U. Steinbrecher, J. Walter Antony, F. De Zan, I. Hajnsek, K. Papathanassiou, F. Kugler, M. Rodriguez Cassola, M. Younis, S. Baumgartner, P. López-Dekker, P. Prats, and A. Moreira. 2013. TanDEM-X: A radar interferometer with two formation-flying satellites. Acta Astronautica 89:83–98. https://doi.org/10.1016/j.actaastro.2013.03.008

Agradecimientos

Agradecemos al equipo del GEDI de la Universidad de Maryland por el acceso a los datos y la revisión de este informe. En particular, damos las gracias a Ralph Dubayah, Matheus Nunes y Sean Healey.

Cita

Mamani N, Pascual A, Finer M (2024) Estimación del carbono en las áreas protegidas y territorios indígenas de la Amazonia. MAAP: 213

MAAP #190: Proyecto de nueva carretera amenaza una Reserva Territorial de Pueblos Indígenas en aislamiento en Perú

En la Amazonía peruana, existe una problemática en relación con la construcción de nuevas carreteras, ya que, si bien mejoran la conectividad, también pueden convertirse en un importante impulsor de la deforestación.

El presente reporte reporte se centra en el proyecto de construcción de una nueva carretera en la región de Cusco, que podría ser una amenaza para la Reserva Territorial Kugapakori, Nahua, Nanti y otros, que sirve como hogar para los Pueblos Indígenas en Situación de Aislamiento y Contacto Inicial (PIACI).

En particular, analizamos el proyecto “Construcción del Camino Vecinal del Sector Vista Alegre Mishahua Hacia Alto Mishahua, del distrito de Megantoni, La Convención – Cusco.” Este proyecto fue presentado por la Municipalidad Distrital de Megantoni (fines de 2019 1) al Servicio Nacional de Certificación Ambiental para las Inversiones Sostenibles (SENACE) con el propósito de obtener la clasificación ambiental correspondiente.

En el transcurso de 2020, se resolvió este procedimiento, y el proyecto fue clasificado en la categoría 2, lo que implica la necesidad de elaborar un Estudio de Impacto Ambiental (EIA) semidetallado.

La ejecución de este proyecto de carretera plantea una seria preocupación en cuanto a la seguridad de los PIACI. El último tramo de este proyecto de carretera se encuentra a menos de 200 metros de la Reserva Territorial Kugapakori, Nahua, Nanti y otros (ver Mapas Base 1 y 2). Esto podría facilitar el acceso a actividades ilícitas en la zona y, como consecuencia, aumentar el riesgo de contacto con los PIACI, poniendo en peligro sus vidas.

De manera adicional, la propuesta de carretera se encuentra cerca al territorio de varias comunidades nativas.

Mapa Base 2. Carretera propuesta: Vista Alegre Mishahua – Alto Mishahua.

Carretera propuesta: Vista Alegre – Alto Mishahua

Este proyecto de construcción de una nueva carretera cuenta con un expediente técnico aprobado mediante una Resolución de Gerencia Municipal2.

Sin embargo, a la fecha este proyecto no cuenta con cobertura ambiental, toda vez que se no se ha aprobado el EIA semidetallado que el SENACE exige para este proyecto, de conformidad con lo resuelto en la clasificación ambiental realizada.

Es importante resaltar que el propósito de esta carretera es «articular la conectividad de las comunidades de Alto Mishahua con sus áreas de producción, especialmente en el ámbito agrícola». Para lo cual se planea la construcción de un camino vecinal de 44,840 kilómetros de longitud, con una calzada de 4 metros de ancho, que estará revestida con afirmado y se considerará una trocha carrozable.

La Figura 2 muestra la pérdida de bosque histórica desde el 2001 hasta el presente momento en 2023 (rojo). En un área de influencia de 5 km alrededor de la ruta propuesta se encontró un total de 2,318 hectáreas de pérdida de bosque durante este periodo de tiempo, lo que sugiere un alto potencial para la expansión de la deforestación.

Además, a lo largo del tramo propuesto se han encontrado aproximadamente 18 infraestructuras y 40 parcelas agrícolas. En la Figura 3 se puede observar las ubicaciones de las parcelas agrícolas e infraestructuras identificadas con imágenes satelitales, destacando de nuevo la potencial para la expansión de la deforestación por una nueva carretera.

Figura 2.
Figura 3.

Situación actual de la carretera propuesta Vista Alegre Mishahua – Alto Mishahua

El proyecto “Construcción del Camino Vecinal del Sector Vista Alegre Mishahua Hacia Alto Mishahua, del distrito de Megantoni, La Convención – Cusco” cuenta con una clasificación de Categoría II: Estudio de Impacto Ambiental Semidetallado (EIAsd); sin embargo, el SENACE ha requerido que previo a la elaboración y presentación del EIAsd ante el MTC, la Municipalidad Distrital de Megantoni deberá presentar una propuesta de Términos de Referencia (TdR) para evaluación y aprobación del SENACE.

En conclusión, para que dicho proyecto cuente con la cobertura ambiental de un EIAsd aprobado, debe primero pasar primero la evaluación de los TdR por parte del SENACE y luego la evaluación del EIAsd por parte del MTC, siendo que en estas etapas se requerirá la opinión técnica del MINCUL. Estos resultan ser dos requisitos previos que debe cumplir este proyecto para contar con la viabilidad ambiental legal.

Notas

1 El proyecto “Construcción del Camino Vecinal del Sector Vista Alegre Mishahua Hacia Alto Mishahua, del distrito de Megantoni, La Convención – Cusco”, el cual fue remitido a la Dirección de Evaluación Ambiental para Proyectos de Infraestructura del Servicio Nacional de Certificación Ambiental para las Inversiones Sostenibles (DEIN-SENACE) por la Municipalidad Distrital de Megantoni en 2019. En noviembre de 2019, la Municipalidad Distrital de Megantoni presento a SENACE la solicitud de clasificación del tipo de estudio ambiental correspondiente al proyecto. El proyecto fue reclasificado en la Categoría II: Estudio de Impacto Ambiental Semidetallado (EIAsd) conforme a los fundamentos y conclusiones del Informe N° 00501-2020-SENACE-PE/DEIN de fecha 12 de agosto de 2020

2Este Proyecto se encuentra registrado como un Proyecto General y cuenta con expediente técnico aprobado mediante Resolución de Gerencia Municipal N° 367-2019-GM-MDM/LC.

Agradecimientos

Cita

Quispe M, Novoa S, Balbuena H, Finer M (2023) Proyecto de nueva carretera amenaza una Reserva Territorial de Pueblos Indígenas en aislamiento. MAAP: 190.

MAAP #197: Minería ilegal de oro en la Amazonía

Ejemplo de gran zona de minería aurífera en la Amazonía peruana.

La minería ilegal de oro (minería aurífera) sigue siendo uno de los principales problemas a los que se enfrentan casi todos los países amazónicos.

De hecho, tras la reciente cumbre de alto nivel de la Organización del Tratado de Cooperación Amazónica, los líderes de las naciones firmaron la Declaración de Belém, que contiene el compromiso de prevenir y combatir la minería ilegal, incluyendo el fortalecimiento de la cooperación regional e internacional (Objetivo 32).

La minería aurífera ilegal es una gran amenaza para la Amazonía porque afecta tanto a los bosques primarios como a los ríos, a menudo en zonas remotas y críticas como áreas protegidas y territorios indígenas.

Es decir, la minería aurífera ilegal es a la vez un importante causa directa de deforestación y una fuente de contaminación del agua (especialmente por mercurio) en toda la Amazonía.

Anteriormente, en el MAAP#178, presentamos una visión general a gran escala de los principales focos de deforestación causados por la minería aurífera en todo el bioma amazónico. Descubrimos que la minería aurífera está activamente causando deforestación en casi todos los nueve países amazónicos.

En el presente reporte, se actualiza este análisis con dos adiciones importantes. Primero, añadimos a la visión general las principales operaciones de extracción de oro en los ríos, además de las que causan deforestación (ver la Figura 1). Luego, presentamos un nuevo mapa de los probables puntos de extracción de oro ilegal, basado en la información facilitada por nuestros socios y en la ubicación de áreas protegidas y territorios indígenas (ver Figura 2).

Mapa Actualizado de la Minería Aurífera en la Amazonía

La Figura 1 es nuestro mapa actualizado de la minería de oro en la Amazonía. Los puntos anaranjados indican las zonas en las que la extracción de oro está causando actualmente la deforestación de los bosques primarios. Los puntos azules indican las zonas donde se extrae oro de los ríos. En conjunto, documentamos 58 sitios mineros activos en bosques y ríos en todo el Amazonas.

Los puntos marcados en rojo indican los lugares de extracción que probablemente sean ilegales, tanto en bosques como en ríos. Encontramos al menos 49 casos de minería ilegal en todo el Amazonas, la gran mayoría de los sitios mineros activos mencionados anteriormente.

Note la concentración de minería ilegal que causa deforestación en el sur de Perú, en el este de Brasil y en Ecuador. Del mismo modo, note las concentraciones de minería ilegal en los ríos del norte de Perú y de los países limítrofes Colombia y Brasil.

Figura 1. Mapa actualizado de la minería aurífera en la Amazonía. Datos: ACA/MAAP. Haga clic para ampliar.

Áreas Protegidas & Territorios Indígenas

La Figura 2 añade a las áreas protegidas y los territorios indígenas. Encontramos 36 conflictos socioambientales: 16 en áreas protegidas y 20 en territorios indígenas. También encontramos otros dos conflictos con Bosques Nacionales brasileños.

Destacamos una serie de zonas de alta conflictividad. Para las áreas protegidas: Parque Nacional Podocarpus en Ecuador; Parque Nacional Madidi en Bolivia; Parques Nacionales Canaima, Caura y Yapacana en Venezuela. Observamos que el estado peruano ha estado minimizando eficazmente las invasiones en áreas protegidas de la región sur de Madre de Dios (Reserva Nacional Tambopata y Reserva Comunal Amarakaeri).

Para los territorios indígenas: Kayapo, Menkragnoti, Yanomami y Mundurucu en Brasil; Pueblo Shuar Arutam en Ecuador; y varias comunidades del sur del Perú.

Figura 2. Mapa de la minería aurífera en la Amazonía, incluyendo áreas protegidas y territorios indígenas. Datos: ACA/MAAP, RAISG. Haga clic para ampliar.

Metodología

Los sitios mineros forestales que se muestran en la Figura 1 se basan en gran medida en información obtenida durante los últimos años de nuestro trabajo de monitoreo de la deforestación. Los sitios fluviales se basan en gran medida en información obtenida de socios en el país y sobre el terreno.

Complementamos esta información con datos automatizados basados de Amazon Mining Watch y datos de RAISG. Para estas fuentes, verificamos imágenes recientes y solo incluimos sitios que parecían estar todavía activos.

La clasificación como sitio minero ilegal se basa en gran medida en su ubicación dentro de áreas protegidas o territorios indígenas, o claramente fuera de una zona minera autorizada.

Cita

Finer M, Mamani N, Arinez A, Novoa S, Larrea-Alcázar D, Villa J (2023) Minería ilegal de oro en la Amazonía. MAAP: 197.

MAAP #190: Proyecto de nueva carretera amenaza una Reserva Territorial de Pueblos Indígenas en aislamiento en Perú

Mapa Base 1. Carretera propuesta: Vista Alegre Mishahua – Alto Mishahua.

En la Amazonía peruana, existe una problemática en relación con la construcción de nuevas carreteras, ya que, si bien mejoran la conectividad, también pueden convertirse en un importante impulsor de la deforestación.

El presente reporte reporte se centra en el proyecto de construcción de una nueva carretera en la región de Cusco, que podría ser una amenaza para la Reserva Territorial Kugapakori, Nahua, Nanti y otros, que sirve como hogar para los Pueblos Indígenas en Situación de Aislamiento y Contacto Inicial (PIACI).

En particular, analizamos el proyecto “Construcción del Camino Vecinal del Sector Vista Alegre Mishahua Hacia Alto Mishahua, del distrito de Megantoni, La Convención – Cusco.” Este proyecto fue presentado por la Municipalidad Distrital de Megantoni (fines de 2019 1) al Servicio Nacional de Certificación Ambiental para las Inversiones Sostenibles (SENACE) con el propósito de obtener la clasificación ambiental correspondiente.

En el transcurso de 2020, se resolvió este procedimiento, y el proyecto fue clasificado en la categoría 2, lo que implica la necesidad de elaborar un Estudio de Impacto Ambiental (EIA) semidetallado.

La ejecución de este proyecto de carretera plantea una seria preocupación en cuanto a la seguridad de los PIACI. El último tramo de este proyecto de carretera se encuentra a menos de 200 metros de la Reserva Territorial Kugapakori, Nahua, Nanti y otros (ver Mapas Base 1 y 2). Esto podría facilitar el acceso a actividades ilícitas en la zona y, como consecuencia, aumentar el riesgo de contacto con los PIACI, poniendo en peligro sus vidas.

De manera adicional, la propuesta de carretera se encuentra cerca al territorio de varias comunidades nativas.

Mapa Base 2. Carretera propuesta: Vista Alegre Mishahua – Alto Mishahua.

Carretera propuesta: Vista Alegre – Alto Mishahua

Este proyecto de construcción de una nueva carretera cuenta con un expediente técnico aprobado mediante una Resolución de Gerencia Municipal2.

Sin embargo, a la fecha este proyecto no cuenta con cobertura ambiental, toda vez que se no se ha aprobado el EIA semidetallado que el SENACE exige para este proyecto, de conformidad con lo resuelto en la clasificación ambiental realizada.

Es importante resaltar que el propósito de esta carretera es «articular la conectividad de las comunidades de Alto Mishahua con sus áreas de producción, especialmente en el ámbito agrícola». Para lo cual se planea la construcción de un camino vecinal de 44,840 kilómetros de longitud, con una calzada de 4 metros de ancho, que estará revestida con afirmado y se considerará una trocha carrozable.

La Figura 2 muestra la pérdida de bosque histórica desde el 2001 hasta el presente momento en 2023 (rojo). En un área de influencia de 5 km alrededor de la ruta propuesta se encontró un total de 2,318 hectáreas de pérdida de bosque durante este periodo de tiempo, lo que sugiere un alto potencial para la expansión de la deforestación.

Además, a lo largo del tramo propuesto se han encontrado aproximadamente 18 infraestructuras y 40 parcelas agrícolas. En la Figura 3 se puede observar las ubicaciones de las parcelas agrícolas e infraestructuras identificadas con imágenes satelitales, destacando de nuevo la potencial para la expansión de la deforestación por una nueva carretera.

Figura 2.
Figura 3.

Situación actual de la carretera propuesta Vista Alegre Mishahua – Alto Mishahua

El proyecto “Construcción del Camino Vecinal del Sector Vista Alegre Mishahua Hacia Alto Mishahua, del distrito de Megantoni, La Convención – Cusco” cuenta con una clasificación de Categoría II: Estudio de Impacto Ambiental Semidetallado (EIAsd); sin embargo, el SENACE ha requerido que previo a la elaboración y presentación del EIAsd ante el MTC, la Municipalidad Distrital de Megantoni deberá presentar una propuesta de Términos de Referencia (TdR) para evaluación y aprobación del SENACE.

En conclusión, para que dicho proyecto cuente con la cobertura ambiental de un EIAsd aprobado, debe primero pasar primero la evaluación de los TdR por parte del SENACE y luego la evaluación del EIAsd por parte del MTC, siendo que en estas etapas se requerirá la opinión técnica del MINCUL. Estos resultan ser dos requisitos previos que debe cumplir este proyecto para contar con la viabilidad ambiental legal.

Notas

1 El proyecto “Construcción del Camino Vecinal del Sector Vista Alegre Mishahua Hacia Alto Mishahua, del distrito de Megantoni, La Convención – Cusco”, el cual fue remitido a la Dirección de Evaluación Ambiental para Proyectos de Infraestructura del Servicio Nacional de Certificación Ambiental para las Inversiones Sostenibles (DEIN-SENACE) por la Municipalidad Distrital de Megantoni en 2019. En noviembre de 2019, la Municipalidad Distrital de Megantoni presento a SENACE la solicitud de clasificación del tipo de estudio ambiental correspondiente al proyecto. El proyecto fue reclasificado en la Categoría II: Estudio de Impacto Ambiental Semidetallado (EIAsd) conforme a los fundamentos y conclusiones del Informe N° 00501-2020-SENACE-PE/DEIN de fecha 12 de agosto de 2020

2Este Proyecto se encuentra registrado como un Proyecto General y cuenta con expediente técnico aprobado mediante Resolución de Gerencia Municipal N° 367-2019-GM-MDM/LC.

Agradecimientos

Cita

Quispe M, Novoa S, Balbuena H, Finer M (2023) Proyecto de nueva carretera amenaza una Reserva Territorial de Pueblos Indígenas en aislamiento. MAAP: 190.

MAAP #183: Áreas Protegidas y Territorios Indígenas – Modalidad Eficaz Contra la Deforestación en la Amazonía

Mapa Base. Pérdida de bosque primario (2017-21) en la Amazonía, en relación con las áreas protegidas y territorios indígenas.

A medida que la deforestación sigue amenazando los bosques primarios en la Amazonía, las designaciones de uso de la tierra son una de las mejores esperanzas para la conservación a largo plazo de los bosques intactos que quedan.

En el presente reporte, evaluamos el impacto de dos de las más importantes: las áreas protegidas y los territorios indígenas.

Nuestro estudio calcula la perdida de bosque primario en los últimos 5 años (2017 – 2021), en nueve países del bioma amazónico, que abarcan una superficie de 883.7 millones de hectáreas (ver Mapa Base).

Asimismo, logramos distinguir, por primera vez, entre la perdida de bosques por incendios y no incendios. Este último es nuestra mejor aproximación a la deforestación por causas antropogénicas, aunque tambien incluye fenómenos naturales (como derrumbes y tormentas de viento).

Analizamos los resultados de las tres principales categorías de uso de la tierra:

1) Áreas Protegidas (a nivel nacional y estatal/departamental), que cubren 197 millones de hectáreas (23.6% de la Amazonía).

2) Territorios indígenas (titulados) que cubren 163.8 millones de hectáreas (19.6% de la Amazonía).

3) Otros (todas las áreas restantes fuera de las áreas protegidas y los territorios indígenas) que cubren 473 millones de hectáreas (56.7% de la Amazonía).

En ese contexto, se concluye que la deforestación fue el principal factor de pérdida de bosque, considerando a los incendios como un subconjunto menor. Es importante precisar que, en promedio, durante el 2017 al 2021, las áreas protegidas y los territorios indígenas tuvieron niveles similares de eficacia, reduciendo la tasa de pérdida de bosque primario tres veces más en comparación con áreas fuera de estas designaciones.

A continuación, mostramos los resultados clave con más detalle, incluyendo un desglose de información para la Amazonía occidental (Bolivia, Colombia, Ecuador y Perú) y la Amazonía brasileña.

Hallazgos Clave

Bioma Amazónico

Hemos documentado la pérdida de 11 millones de hectáreas de bosque primario en los nueve países del bioma amazónico entre el 2017 y el 2021. De este total, el 71% se debió a causas ajenas a incendios (deforestación y causas naturales) y el 29% a incendios.

Para las categorías principales de uso de tierra, solo el 11% de la pérdida de bosque ocurrió en áreas protegidas y territorios indígenas, mientras que el 78% restante ocurrió en áreas fuera de estas designaciones.

Para estandarizar estos resultados en función de las distintas coberturas de superficie, calculamos los índices de pérdida de bosque primario (pérdida/área total de cada categoría). La Figura 1 muestra los resultados de estos índices en los nueve países amazónicos.

Figura 1. Tasas de pérdida de bosque primario en la Amazonía, 2017-21

Al desglosar por año, el 2017 registró las tasas de pérdida de bosque más elevadas, con una severa temporada de deforestación y de incendios. El 2021 registró la segunda más alta en deforestación, mientras que el 2020 la segunda más alta en pérdida de bosque por incendios.

En el promedio de los cinco años, las áreas protegidas (verde) tuvieron la tasa más baja de pérdida de bosque primario (0.12%), seguidas de los territorios indígenas (0.14%).

Los territorios indígenas (anaranjado) tuvieron en realidad una tasa de deforestación ligeramente inferior, pero una tasa superior de pérdida por incendio, resultando en general en una tasa de pérdida de bosque superior.

Fuera de estas designaciones (rojo), la tasa de pérdida de bosque primario fue el triple (0.36%), especialmente por una deforestación mucho mayor.

Amazonía Occidental

Desglosando los resultados específicamente para la Amazonía occidental (Bolivia, Colombia, Ecuador y Perú), documentamos la pérdida de 2.6 millones de hectáreas de bosque primario entre el 2017 y el 2021. De este total, el 80% corresponde a causas ajenas a incendios (deforestación y causas naturales) y el 20% a incendios.

Para las principales categorías de uso de suelo, el 9.6% ocurrió en áreas protegidas, el 15.6% en territorios indígenas y el 74.8% restante ocurrió fuera de estas designaciones.

La Figura 2 muestra las tasas estandarizadas de pérdida de bosque primario en la Amazonía occidental.

Figura 2. Tasas de Pérdida de Bosque Primario en la Amazonía Occidental, 2017-21.

Desglosado por años, el 2017 registró la mayor tasa de deforestación y de pérdida de bosque en general. Pero el 2020 tuvo la mayor tasa de pérdida por incendios, debido principalmente a los extensos incendios en Bolivia. El 2021 también tuvo una tasa de deforestación relativamente alta. Asimismo, cabe destacar el alto nivel de incendios en áreas protegidas en el 2020 y el 2021, y en territorios indígenas en el 2019.

Promediando los cinco años analizados, las áreas protegidas tuvieron la tasa más baja de pérdida de bosque primario (0.11%), seguidas de los territorios indígenas (0.16%).

Fuera de estas designaciones, la tasa de pérdida de bosque primario fue del 0.30%. Es decir, el triple que en las áreas protegidas y el doble que en los territorios indígenas.

Amazonía Brasileña

Desglosando los resultados específicamente para la Amazonía brasileña, documentamos la pérdida de 8.1 millones de hectáreas de bosque primario entre el 2017 y el 2021. De este total, el 68% se debió a causas ajenas a incendios (deforestación y causas naturales) y el 32% a incendios.

Para las principales categorías de uso de suelo, el 9.4% ocurrió en territorios indígenas, el 11.2% ocurrió en áreas protegidas y el 79.4% restante ocurrió fuera de estas designaciones.

La Figura 3 muestra las tasas estandarizadas de pérdida de bosque primario en la Amazonía brasileña.

Figura 3. Tasas de pérdida de bosque primario en la Amazonía brasileña, 2017-21.

Desglosado por año, el 2017 tuvo la tasa de pérdida de bosque más alta registrada en todo el estudio (0.58%), debido tanto a la elevada deforestación como a los incendios. Note que los territorios indígenas se vieron especialmente afectados por los incendios en el 2017.

El 2020 registró la segunda tasa más alta de pérdida de bosque, también debido a una intensa temporada de incendios. Los incendios no fueron tan graves al año que siguió (2021), pero la deforestación aumentó.

En el promedio de los cinco años, los territorios indígenas tuvieron la tasa más baja de pérdida de bosque primario (0.14%), seguidos de las áreas protegidas (0.15%).

Los territorios indígenas tuvieron la tasa de deforestación más baja, pero un alto impacto por incendios.

Fuera de estas designaciones (rojo), la tasa de pérdida de bosque primario fue el triple (0.45%).

Metodología

Para estimar la deforestación en las tres categorías (áreas protegidas, territorios indígenas y otros), utilizamos los datos anuales de pérdida de bosque (2017-21) de la Universidad de Maryland (laboratorio GLAD) para tener una fuente coherente en todos los países (Hansen et al 2013).

Obtuvimos estos datos, que tienen una resolución espacial de 30 metros, del servidor de «Global Forest Loss due to Fires 2000-2021«. También es posible visualizar e interactuar con los datos en el portal principal de Global Forest Change.

Los datos anuales se desglosaron en pérdida de bosque debido a incendios y a causas ajenas a incendios (otros factores de perturbación). Es importante señalar que las causas ajenas a incendios incluyen tanto la deforestación por causas antropogénicas como la pérdida por fuerzas naturales (derrumbes, tormentas de viento, etc.).

También filtramos estos datos sólo para la pérdida de bosque primario, siguiendo la metodología establecida por Global Forest Watch. El bosque primario se define generalmente como bosque intacto que no ha sido talado anteriormente (a diferencia del bosque secundario que es previamente talado, por ejemplo). Aplicamos este filtro intersecando los datos de pérdida de cobertura forestal con el conjunto de datos adicional «bosques tropicales húmedos primarios» a partir del 2001 (Turubanova et al 2018). Por lo tanto, a menudo utilizamos el término «pérdida de bosque primario» para describir estos datos filtrados.

Los datos presentados como tasa de pérdida de bosque primario se estandarizan por el área total cubierta de cada categoría respectiva. Por ejemplo, para comparar adecuadamente los datos de pérdida de bosque primario en áreas que tienen un tamaño total de 100 hectáreas frente a 1000 hectáreas respectivamente, dividimos por el área para estandarizar el resultado.

Nuestro ámbito geográfico se extiende desde los Andes hasta la llanura amazónica y llega hasta las transiciones con el Cerrado y el Pantanal. Este rango incluye nueve países amazónicos (o región Pan-Amazónica según la definición de RAISG) y consiste en una combinación del límite de la cuenca amazónica, el límite biogeográfico amazónico y el límite de la Amazonía legal en Brasil. Ver el Mapa Base más arriba para la delineación de este límite amazónico híbrido, diseñado para una máxima inclusión.

Las fuentes de datos adicionales incluyen:

  • Áreas protegidas a nivel nacional y estatal/departamental: RUNAP 2020 (Colombia), SNAP 2022 (Ecuador), SERNAP & ACEAA 2020 (Bolivia), SERNANP 2022 (Perú), INPE/Terrabrasilis 2022 (Brasil), SOS Orinoco 2021 (Venezuela), y RAISG 2020 (Guyana, Surinam, y Guyana Francesa.)
  • Territorios Indígenas: RAISG & Ecociencia 2022 (Ecuador), INPE/Terrabrasilis 2022 (Brasil), RAISG 2020 (Colombia, Bolivia, Venezuela, Guyana, Surinam, y Guyana Francesa), y MINCU & ACCA 2021 (Perú). Para Perú, se incluyeron a las comunidades nativas tituladas y a las Reservas Comunales para grupos indígenas en aislamiento voluntario.

Para el análisis, primero categorizamos las Áreas Protegidas y luego los Territorios Indígenas para evitar la superposición de áreas. Cada categoría se desglosó por año de creación/reconocimiento para que coincidiera con el reporte anual de pérdida de bosque. Por ejemplo, si un área protegida se creó en diciembre del 2018, se considera dentro del análisis para el año 2019.

Agradecimientos

Este trabajo se realizó gracias al Andes Amazon Fund (AAF), a la Agencia Noruega de Cooperación para el Desarrollo (NORAD), y al Fondo Internacional de Conservación de Canadá (ICFC).

Agradecemos a M. MacDowell, C. Zavala, M. Cohen, y G.Palacios por sus útiles comentarios a versiones anteriores de este reporte

Cita

Finer M, Mamani N (2023) Áreas Protegidas y Territorios Indígenas Eficaces Contra la Deforestación en la Amazonía. MAAP: 183.

MAAP #178: Deforestación por Minería de Oro en la Amazonía

Mapa Base. Puntos críticos de deforestación por minería en la Amazonía. Las letras A-J indican la ubicación de los casos. Haga clic para agrandar imagen.

La minería de oro (minería aurífera) es una de los principales causas de la deforestación en la Amazonía.

Aunque no suele alcanzar la escala de la deforestación agrícola, tiene el potencial de impactar considerablemente zonas críticas como áreas protegidas y territorios indígenas.

Además, suele dirigirse a zonas remotas, impactando así a bosques primarios ricos en carbono.

En el presente reporte, presentaremos por primera vez, el panorama a gran escala de los principales focos de deforestación causados por la minería aurífera en todo el bioma Amazónico

Se ha evidenciado que la minería de oro está gravamente causando deforestación en casi los nueve países amazónicos (ver Mapa Base).

El análisis está enfocado principalmente en cinco países: Perú, Brasil, Venezuela, Ecuador y Bolivia, mostrando estudios de casos activos de los frentes más graves de deforestación minera.

Lo cual ha permitido evidenciar que, en la mayoría de los casos, esta minería es probablemente ilegal, ya que se está llevando a cabo en áreas protegidas y territorios indígenas.

Es importante mencionar que este reporte se centra en la actividad minera que está provocando la deforestación de bosques primarios. Hay otras zonas críticas de extracción de oro en ríos, como al norte de Perú y al sur de Colombia, que no se incluyen en este informe.

A continuación, mostramos una serie de imágenes satelitales de alta resolución de los casos de estudio de la Amazonía. Cada ejemplo destaca la deforestación reciente de la minería aurífera; es decir, comparando el 2020 (panel izquierdo) con el 2022 (panel derecho).

Estudios de Caso, en Alta Resolución

Amazonía Peruana

El sur de Perú (específicamente, la región Madre de Dios) es uno de los ejemplos más graves y emblemáticos de la deforestación provocada por la minería aurífera en toda la Amazonía, la cual ha deforestado miles de hectáreas de bosque primario (ver MAAP #154). Los frentes mineros activos han evolucionado sustancialmente durante los últimos 20 años. Recientemente, la minería aurífera ha impactado a zonas como Mangote y Pariamanu.

A. Mangote

B. Pariamanu

Amazonía Brasileña

En la vasta Amazonia brasileña, la deforestación provocada por la minería aurífera ilegal es más grave en varios territorios indígenas, entre los que destacan: Munduruku (estado de Pará), Kayapó (Pará) y Yanomami (Roraima).

C. Territorio Indígena Munduruku


D. Territorio Indígena Kayapó


E. Territorio Indígena Yanomami

Amazonía Venezolana

La minería es uno de los principales causas de la deforestación en la Amazonía venezolana (MAAP #155). Este impacto minero se está produciendo en el designado Arco Minero del Orinoco, pero también en áreas protegidas clave como los Parques Nacionales de Caura, Canaima, y Yapacana.

F. Parque Nacional Canaima


G. Parque Nacional Yapacana

Amazonía Ecuatoriana

Hemos estado documentando los numerosos focos de deforestación por minería en la Amazonía ecuatoriana que parecen intensificarse en los últimos años. Dos ejemplos clave se encuentran a lo largo del río Punino (provincias de Napo y Orellana) y más al sur, en el Parque Nacional Podocarpus.

H. Río Punino

I. Parque Nacional Podocarpus

Amazonia Boliviana

Uno de los puntos críticos de deforestación por minería de oro más nuevos se encuentra a lo largo del río Tuichi en el Parque Nacional Madidi.

J. Parque Nacional Madidi

Metodología

Los focos de deforestación por minería se identificaron en base a los esfuerzos continuos del proyecto MAAP, y asistidos por el portal  Amazon Mining Watch.

Agradecimientos

Agradecemos a A. Folhadella, S. Novoa, D. Larrea, C. De Ugarte, M. Teran, C. Zavala, y G. Palacios por sus útiles comentarios a este reporte, y Conservación Amazónica – ACCA para datos sobre sitios mineros en el norte de Perú.

Este trabajo se realizó con el apoyo de Norad (Agencia Noruega de Cooperación para el Desarrollo) e ICFC (Fondo Internacional para la Conservación de Canadá)

Cita

Finer M, Ariñez A, Mamani N (2023) Deforestación por Minería de Oro en la Amazonía. MAAP: 178.

MAAP #170: Actividad Minera en Territorio Shuar Arutam (Amazonia Ecuatoriana)

Mapa Base. Pueblo Shuar Arutam. Datos: EcoCiencia.

El territorio del Pueblo Shuar Arutam se encuentra en la cordillera de Cóndor a los extremos sureste de la amazonia ecuatoriana (provincia de Morona Santiago), en la frontera con Perú.1

Más de la mitad (55%) del territorio se encuentra concesionado a la industria minera, dedicada a la extracción de metales como oro, plata y cobre.2

Además, se documenta un aumento de la superficie minera al interior del territorio desde el año 2017, con un notable pico en 2020 (ver Gráfico 1 en el Anexo).3

En el presente reporte, informamos sobre la situación actual en el año 2022.

Presentamos cuatro casos de estudio que permiten ejemplificar el impacto y la velocidad con la que la actividad minera se ha desarrollado en los últimos dos años dentro del territorio Shuar Arutam (258 hectáreas).

Actividad Minera 2022

Los procesos de monitoreo comunitario del Pueblo Shuar Arutam durante el año 2022 evidencian un aumento de la actividad minera dentro del territorio, registrando 42 sitios con minería artesanal y 16 sitios con minería a gran escala (ver Mapa Minería 2022 en Pueblo Shuar Arutam).

Mapa Minería 2022 en Pueblo Shuar Arutam. Datos: F. EcoCiencia y monitoreo PSHA.

Casos de Estudio

En estos cuatro casos de estudio, de manera complementaria al análisis geográfico, se incluyen fotografías producto del proceso de monitoreo comunitario. El total de superficie afectada por minería en los cuatro casos reportados es de 258 hectáreas.

Caso 1. Tsuiis

El primer caso de estudio se localiza a lo largo del río Santiago, en el límite de las tierras comunitarias Mayaik y Santiak, al norte de la localidad Tsuiis.

Entre junio 2020 y octubre 2022, se registraron un total de 61 hectáreas de superficie afectada por la minería. El análisis inicial para el 18 de junio 2020 muestra que la actividad minera ocupaba 8 ha en la zona. Un año después aumentó 37 ha y finalmente para el 12 de octubre 2022 la superficie afectada sumó 15.6 ha adicionales. Además, como un impacto complementario, dentro del periodo monitoreado se registró la apertura de 5.3 km de vía en zonas con cobertura vegetal. A partir de la fecha inicial de monitoreo hasta el 30 de julio de 2022 se identificaron 3.5 km de vía y tan solo 9 días después (8 de agosto de 2022) se registraron 1.7 km adicionales.

Mapa monitoreo Caso 1. Tsuiis, Ecuador. F. EcoCiencia

La actividad minera reportada en este caso de estudio se encuentra distribuida en tres concesiones mineras en estado de exploración/explotación y 6 zonas destinadas a minería artesanal. La mayor parte del aumento de actividad minera (59%) se identificó en la concesión minera Santiago, dedicada a la extracción de oro, bajo el régimen de pequeña minería a cargo del Consorcio Nangaritza (ARCERNNR, 2022). Adicionalmente, se han podido identificar 10.7 ha con actividad minera que se desarrolla fuera del límite de las zonas destinadas a minería.

Panel Caso 1. Tsuiis, Ecuador. F. EcoCiencia.
Panel monitoreo comunitario Caso 1. Tsuiis, Ecuador. F. EcoCiencia.

Caso 2. Kusumas

Este segundo caso de estudio se ubica también a lo largo del río Santiago, a 10 km al este del primer caso de estudio. Aledaño a este tramo del río se encuentra la localidad Kusumas.

Entre octubre 2020 y octubre 2022 se registraron un total de 73 hectáreas afectadas por actividad minera. Para el 10 de diciembre de 2020 la superficie afectada era de 4 ha, en 9 meses (27 de septiembre de 2021) esta aumentó 47 ha y finalmente para el 12 de octubre 2022 se identificó un nuevo incremento de 22 ha de superficie afectada por actividad minera. Adicional a esto, dentro del periodo de monitoreo se registró la apertura de un total de 4.3 km de vías.

Mapa monitoreo Caso 2. Kusumas, Ecuador. F. EcoCiencia

La actividad minera reportada en este caso de estudio se encuentra dentro de tres concesiones mineras en estado de exploración / explotación y 2 zonas destinadas a minería artesanal. La mayor parte del aumento de actividad minera se identificó dentro de las concesiones mineras MIDAS 1, MIDAS 2 Y MIDAS 3, dedicadas a la extracción de oro, bajo el régimen de pequeña minería a cargo del Consorcio Midas Santiago (ARCERNNR, 2022). Adicionalmente, 5.4 hectáreas se encuentran fuera del límite de las zonas destinadas para minería.

Panel Caso 2. Kusumas, Ecuador. F. EcoCiencia.
Panel monitoreo comunitario Caso 2. Kusumas, Ecuador. F. EcoCiencia.

Caso 3. Warintza

Este caso de estudio se localiza al norte del campamento minero Warintza, ubicado al margen del río que lleva el mismo nombre. Este tercer caso se encuentra en la tierra comunitaria Nunkui.

Dentro del periodo de análisis junio 2020 a octubre 2022, se registraron un total de 15.7 hectáreas de superficie afectada por actividad minera y 12.4 km de vía. Para el 28 de julio 2020 se identificó la aparición de 4.5 km de vía, luego de dos meses (26 de septiembre 2020) se registró 0.1 ha afectadas por actividad minera. Para el 4 de septiembre 2021 la superficie afectada por minería aumentó 9.6 ha y se identificó también un nuevo incremento de 4.8 km adicionales de vía. En nueve meses (18 de junio 2022) se identificó 3.1 km adicionales de vía, y finalmente, para el 10 de octubre 2022, se registró un nuevo incremento de 6 hectáreas de actividad minera.

Mapa monitoreo Caso 3. Warintza, Ecuador. F. EcoCiencia

El total de la actividad minera reportada en este caso de estudio se encuentra dentro de dos concesiones mineras (no hay información sobre la fase en la que se encuentran). La mayor parte del aumento de actividad minera se identificó en la concesión minera Caya 21, dedicada a la extracción de cobre, bajo el régimen general de minería, a cargo de la compañía Lowell Mineral Exploration Ecuador S.A (ARCERNNR, 2022).

Panel Caso 3. Warintza, Ecuador. F. EcoCiencia.
Panel monitoreo comunitario Caso 3. Warintza, Ecuador. F. EcoCiencia.

Para visibilizar más a detalle la afectación producida por la actividad minera en este caso de estudio, hemos utilizado una imagen de muy alta resolución (Skysat, 0.50 metros) del 29 de noviembre de 2022. Se pueden analizar con mucha precisión las áreas deforestadas al interior de la quebrada y la dimensión de las piscinas de dragado.

Skysat Caso 3. Datos: Planet.

Caso 4. Nayap

El último caso de estudio está ubicado a lo largo del río Zamora, en el límite oeste de la tierra comunitaria Churuwia, junto a la localidad Nayap.

Dentro del periodo de monitoreo enero 2020 y octubre 2022 se registraron un total de 108 hectáreas de superficie afectada por actividad minera. Para el 18 de junio 2020 la actividad minera era de 44.5 ha, después de 14 meses aumentó 27 ha, diez meses después incrementaron 19.6 ha y finalmente para el 6 de octubre 2022 se registró una superficie afectada de 16.8 ha.  Además, durante el periodo de monitoreo se registró 4.9 km de accesos, mismos que se iban perdiendo conforme avanzaba la minería.

Mapa monitoreo Caso 4. Nayap, Ecuador. F. EcoCiencia

El total de la actividad minera reportada en este caso de estudio se encuentra distribuido dentro de ocho concesiones mineras en estado de exploración / explotación y dos zonas destinadas a minería artesanal. La mayor parte del aumento de actividad minera (60%) se localiza en las concesiones mineras YANKUR 345 y MEFFEC, dedicadas a la extracción de oro, bajo el régimen de pequeña minería (ARCERNNR, 2022). Además, 6.9 hectáreas se encuentran fuera del límite de las zonas destinadas para minería.

Panel Caso 4. Nayap, Ecuador. F. EcoCiencia.
Panel monitoreo comunitario Caso 4. Nayap, Ecuador. F. EcoCiencia.

Anexo

Dinámica de la actividad minera en el periodo 2005-2020 en el Pueblo Shuar Arutam (ver Gráfico 1).

Gráfico 1.  Dinámica de la actividad minera en el periodo 2005-2020 en el Pueblo Shuar Arutam. Datos MapBiomas, F. EcoCiencia.

Notas

1 El territorio del Pueblo Shuar Arutam (PSHA), situado entre los ríos Zamora y Yaupi, está conformado por seis asociaciones, Nunkui, Sinip, Santiak, Mayaik, Churuwia y Arutam, que agrupan a 49 centros o comunidades. Además, 5% del territorio, 11446,7 ha, es parte del Bosque Protector Kutuku Shaimi. El Pueblo Shuar Arutam es una organización reconocida por la Federación Interprovincial de Centros Shuar – FICSH en el Ecuador, y su meta es la constitución de una Circunscripción Territorial Indígena, como un Gobierno de Régimen Especial facultada por la Constitución del Ecuador.

2 De 139 zonas de catastro minero que se sobreponen al territorio, 74 son concesiones mineras, 61 zonas son destinadas a minería artesanal, específicamente a la extracción de oro, y 4 zonas son de libre aprovechamiento, utilizadas para la extracción de material de construcción (ARCERNNR, 2022).

3 MAPBIOMAS, 2021

Agradecimientos

Agradecemos a el Pueblo Shuar Arutam por sus aportes a este reporte.

Este informe es parte de una serie enfocada en la Amazonía ecuatoriana a través de una colaboración estratégica entre las organizaciones Fundación EcoCiencia y Amazon Conservation, con el apoyo de la Agencia Noruega de Cooperación para el Desarrollo (Norad).

Cita

​​​Villa J, Aguilar C, Villacís S, Finer M, Josse C (2022) Actividad Minera en Territorio Shuar Arutam (Amazonia Ecuatoriana). MAAP: 170.

MAAP #159: Apertura de Vías en la Amazonía Ecuatoriana

Mapa Base. Casos de estudio. Datos: EcoCiencia.

El presente reporte examina la acelerada apertura de nuevas vías en la Amazonía ecuatoriana durante el 2021.

Específicamente, mostramos cuatro casos de estudio en las provincias de Orellana, Pastaza y Morona Santiago (ver el Mapa Base) que ejemplifican dicha situación, dando como resultado la apertura de 35 kilómetros nuevos el año pasado.

El tema de las nuevas vías en la Amazonía ecuatoriana es de alta prioridad por la rapidez de su apertura y los impactos asociados, en términos de desencadenar deforestación y degradación del bosque circundante, incluso en territorios indígenas.

Caso 1. Vía Taracoa (Provincia de Orellana)

El primer caso de estudio es grave debido a la proximidad de la ampliación de la vía hacía el mega-diverso Parque Nacional Yasuní (a solo 800 metros de su límite noroeste). La nueva vía se localiza en la Provincia de Orellana, al margen sur del Río Napo.

Como se ve en la Imagen 1, antes de la apertura de la nueva vía, la conexión vial llegaba hasta el margen norte del Río Napo, por lo que, para acceder al margen sur del río, se hacía a través de barcaza. De esta manera, el acceso a esta zona de bosque primario estaba más limitado y tenía un mayor control.

La nueva vía localizada al sur del Río Napo tiene una longitud de 15 km, los cuales fueron construidos en los ocho meses entre febrero y octubre de 2021. Los diferentes colores mostrados en el siguiente mapa indican la rápida evolución de su construcción.

Esta nueva vía genera preocupación sobre los posibles futuros impactos que puede ocasionar alrededor y dentro de Parque Nacional Yasuní.

Imagen 1 – Vía Taracoa. Datos: EcoCiencia, Planet.

La Imagen 2 hace zoom para mostrar la apertura entre enero (panel izquierdo) y octubre (panel derecho) de 2021.

Imagen 2 – Vía Taracoa. Datos: EcoCiencia, Planet.

Caso 2. Vía Bataboro (Provincia de Pastaza)

También cerca del Parque Nacional Yasuní, dentro el sector central del Territorio Étnico Waorani, se localiza el segundo caso de estudio.

Como se ve en la Imagen 3, la ampliación vial se ubica alrededor de una extensión de una ruta conocida como “Via Auca” entre las comunidades Waorani de Tiwino y Bataboro, en la provincia de Pastaza. Ambas nuevas vías se prolongan desde la vía principal en forma de U invertida hasta volverse a conectar con la vía principal.

La longitud de las dos vías en su totalidad es de 6 km. El primer tramo (4.4 km) fue construido entre enero 2020 y noviembre 2021 al sur de la comunidad Bataboro, mientras que el segundo tramo (1.7 km) fue construido entre noviembre de 2021 y enero 2022 al sur de la comunidad de Tiwino.

Las vías se ubican a 12 km de la zona de amortiguamiento del Parque Nacional Yasuní y a 22 km del límite oeste de la Zona Intangible Tagaeri-Taromenane. Cabe mencionar también que ambas vías se localizan dentro del Bloque Petrolero Tiguino, administrado por la compañía Petrobell Inc, y actualmente en estado de explotación.

Imagen 3 – Vía Bataboro. Datos: EcoCiencia, Planet.

La Imagen 4 muestra la construcción entre enero de 2020 (panel izquierdo) y enero de 2022 (panel derecho) de 2021.

Imagen 4 – Vía Bataboro. Datos: EcoCiencia, Planet.

Caso 3. Vía Nushiño (Provincia de Pastaza)

Como se ve en la Imagen 5, el tercer caso de estudio amenaza a grandes extensiones de bosque primario. La nueva vía se localiza en la provincia de Pastaza, dentro del sector oeste del Territorio Waorani, conectando a la comunidad Waorani de Nushiño con el poblado de Arajuno y con la comunidad Waorani de Ishpingo hacia el oeste.

Solamente durante el mes de septiembre de 2021 se monitoreo una expansión de la vía de 2 km aproximadamente.

Cabe mencionar que actualmente hay un proyecto consultado y aprobado para ampliar esta vía hasta la comunidad Waorani de Toñampare. La totalidad del proyecto de la nueva vía seria de 41 km de longitud, lo que representaría un nuevo frente de deforestación en esta zona de la Amazonía ecuatoriana.

Imagen 5 – Vía Nushiño. Datos: EcoCiencia, Planet.

La Imagen 6 hace zoom para mostrar la construcción durante el mes de septiembre de 2021.

Imagen 6 – Vía Nushiño. Datos: EcoCiencia, Planet.

Caso 4. Vía Pumpuentsa (Provincia de Morona Santiago)

Finalmente, el cuarto caso de estudio se localiza en el remoto sureste de la Amazonía ecuatoriana, en el Territorio Indígena Achuar.

La Imagen 7 muestra que la nueva vía representa un nuevo frente de apertura vial con el objetivo de establecer conexiones viales entre el poblado de Taisha con la comunidad de Pumpuentsa, y posiblemente hasta Puerto Morona y la frontera con Perú.

Entre septiembre de 2021 y abril 2022 se registró una ampliación total de la vía de aproximadamente 12 km.  Los diferentes colores en la siguiente imagen muestran la rápida evolución de su construcción durante los siete meses monitoreados.

Cabe mencionar que la ampliación de la vía podría estar vinculada con el desarrollo de actividades petroleras en los bloques 76, 77 y 78, actualmente en estado de solicitud.

Imagen 7 – Vía Pumpuentsa. Datos: EcoCiencia, Planet.

La Imagen 8 hace zoom para mostrar la construcción entre septiembre de 2021 (panel izquierdo) y abril de 2022 (panel derecho).

Imagen 8 – Vía Pumpuentsa. Datos: EcoCiencia, Planet.

Cita

Villacís S, Finer M, Josse C (2022) Construcción de Vías en la Amazonía Ecuatoriana. MAAP: 159.

Agradecimientos

Agradecemos a E. Ortiz (AAF) y Matthew Terry (Fundación Río Napo) por sus aportes a este reporte.

Este informe es parte de una serie enfocada en la Amazonía ecuatoriana a través de una colaboración estratégica entre las organizaciones Fundación EcoCiencia y Amazon Conservation, con el apoyo de la Agencia Noruega de Cooperación para el Desarrollo (Norad).

MAAP #150: Plataformas Petroleras se Acercan a la Zona Intangible (Parque Nacional Yasuní, Ecuador)

Mapa Base.

El Parque Nacional Yasuní, ubicado en el corazón de la Amazonía ecuatoriana, es uno de los lugares con mayor biodiversidad del mundo gracias a su ubicación única en la intersección de la Amazonía, la Cordillera de los Andes y la línea ecuatorial (ver Mapa Base).

Además, forma parte del territorio ancestral de los pueblos Waorani. Casi toda la porción sur del Parque Nacional Yasuní ha sido declarada como Zona Intangible para  proteger el territorio de los parientes del Waorani que viven en aislamiento voluntario (Tagaeri-Taromenane).

En una serie de informes anteriores mostramos la construcción de una vía de acceso y de plataformas petroleras en el Bloque ITT. Este polémico bloque, dirigido por la petrolera estatal Petroecuador, se encuentra en el remoto (e intacto) sector noreste del Parque Nacional Yasuní.

En el presente reporte, basado en imágenes satelitales actualizadas, mostramos la construcción más reciente dentro el Bloque ITT, la plataforma Ishpingo B. Esta plataforma se localiza a solo 300 metros de la zona de amortiguamiento de la Zona Intangible.

También advertimos de futuras construcciones que podrían entrar en la zona de amortiguamiento y llegar al límite de la propia Zona Intangible.

Imagen 1. Datos: Planet, MAAP/ACA.

Plataformas Ishpingo A y B

Las siguientes imágenes muestran la construcción de las dos nuevas plataformas (Ishpingo A y B) en el corazón del Parque Nacional Yasuní (Bloque ITT).

La Imagen 1 (a la derecha) muestra la plataforma más al sur (Ishpingo B) se encuentra 300 metros de la zona de amortiguamiento de la Zona Intangible.

La Imagen 2 (debajo) muestra la construcción de las dos nuevas plataformas y la apertura de su vía de acceso, que se desarrolló en el periodo entre junio 2020 (panel izquierdo) y enero 2022 (panel derecho).

Cabe mencionar que la construcción de estas plataformas cuentan con una licencia ambiental correspondiente de acuerdo con el “Estudio de Impacto Ambiental y Plan de Manejo Ambiental del Proyecto de Desarrollo y Producción del Campo Ishpingo Norte.»

Imagen 2. Datos ESA, Planet, MAAP/ACA.
Imagen 3. Datos: MAAP/ACA, Energy and Environmental Consulting.

Hacia la Zona Intangible

La Imagen 3 muestra (en rojo) la ubicación de las dos nuevas plataformas (Ishpingo A y B), en relación al Parque Nacional Yasuní y la Zona Intangible.

Se visualiza que la plataforma más al sur (Ishpingo B) se encuentra 300 metros de la zona de amortiguamiento de la Zona Intangible.

Alerta: Cabe enfatizar ver que de acuerdo con una versión anterior del Estudio de Impacto Ambiental se tenía planificado la construcción de ocho plataformas adicionales (Ishpingo C-J), todas localizadas dentro de la zona de amortiguamiento hacia el límite de la propia Zona Intangible.

De hecho, a principios de 2022, el gerente de Petroecuador ha comenzado a manifestar públicamente la importancia de seguir adelante con estos planes sumamente controvertidos.

 

Agradecimientos

Agradecemos a M. Bayón y P. Bermeo por información útil sobre los Estudios de Impacto Ambiental.

Este informe es parte de una serie enfocada en la Amazonía ecuatoriana a través de una colaboración estratégica entre las organizaciones Fundación EcoCiencia y Amazon Conservation, con el apoyo de la Agencia Noruega de Cooperación para el Desarrollo (Norad) y el Fondo Internacional de Conservación de Canadá (ICFC).

Cita

Finer M, Mamani N, Josse C, Villacis S (2022) Plataformas Petroleras se Acercan a la Zona Intangible (Parque Nacional Yasuní, Ecuador). MAAP: 150.